
Towards best practices for online predictive
process monitoring

Stijn Kas1 � , Ivar Siccama2 �, Peter van der Putten2 � , Georg Krempl1 �

, Ruben Post1 � , Sebastiaan Wiewel1 �, and Hajo Reijers1 �

1 Utrecht University, Utrecht, the Netherlands
2 Pegasystems, Amsterdam, The Netherlands

Abstract. State-of-the-art research on predictive process monitoring
(PPM) is predominantly based on ’offline’ models, which are trained
ahead of time and can be used during the run-time of a process. In re-
ality, process data is streaming data that arrives sequentially over time.
For practical implementation this means that the data needs to be col-
lected over a longer time period before a model can be used, which won’t
be able to adapt to newer information. To this end, this work describes
a pipeline approach applicable on streaming data, integrating various
components from traditional PPM to facilitate online learning: traces are
encoded and labeled in real-time to create a generic end-to-end pipeline
allowing for experimentation with different configurations. Experimental
results with this pipeline approach show a need for proper encoder and
algorithm selection which is supported by this pipeline.

Keywords: predictive process monitoring · online learning · stream analytics ·
concept drift

1 Introduction

Predictive process monitoring (PPM) aims to predict the final business outcome
of a process while the process is still ongoing [24]. A business outcome, the
main deliverable of a process, delivers value for the end-customer. Improving
a business outcome can lead to shortening the process or improving the qual-
ity of service; but can also bring value to the business itself through improved
efficiency, effectiveness or flexibility of the process [14]. By predicting these out-
comes in real-time, action can be taken during individual process execution,
influencing the process execution to ultimately optimize the outcome. For this
optimization task various different approaches have been described under the
term prescriptive process monitoring, such as alarms, interventions, or next best
action recommendations [26,29].

The vast majority of process monitoring approaches use historical event logs
to first train a machine learning model, then re-use this model to predict the
outcome for a new ongoing case. These are typically defined as two separate
phases, one for offline training and one for online deployment [18,24]. However,

https://orcid.org/0000-0003-2520-5494
https://orcid.org/0000-0002-7709-7045
https://orcid.org/0000-0002-6507-6896
https://orcid.org/0000-0002-4153-2594
https://orcid.org/0000-0001-6455-7463
https://orcid.org/0000-0002-3077-1880
https://orcid.org/0000-0001-9634-5852

if the underlying data distribution changes over time, the model might perform
poorly due to the differences between data at training and deployment time.
These distribution changes are known as concept drift, which have important
particularities in for business processes [4]. While traditionally concept drift is
seen as external factors influencing the data distribution (COVID-19 being a
particularly influential example), processes are also subject to change in the use
of the process itself by its users, such as an increase of certain behavior or a
change in desired business outcomes. Additionally, business processes naturally
evolve and degrade in effectiveness and efficiency over time in a concept known
as entropy [7,8]. From this perspective, it is desirable to continuously improve a
process over time, which in turn changes the data distribution at each change.
Lastly, a self-reinforcing effect can be found when more algorithms are used
throughout a process creating an even more dynamic environment. If a model
cannot adapt to these changes, any change in process design immediately de-
creases the performance and usefulness of a model. From this perspective it is
naive to assume a steady-state process throughout its lifetime, and it would seem
worthwhile to instead adapt the application of predictive process monitoring to
an ever-evolving business process. For this, we look at the domain of online
learning.

In an online learning or stream analytics setting, a machine learning model
is deployed which can be continuously adapted, allowing the model to remain
up-to-date, removing the need to develop any models up front before making
use of predictions. In the case of (instance-)incremental learning, each individ-
ual new data instance is used to update the weights of the model. Thus far, [8]
and [17] have explored the use of online learning in the context of predictive
process monitoring in experimental settings. These works focused on exploring
the effect of concept drift on specific classifiers within a business process, using
synthetic logs and two datasets from the BPI Challenge [28]. While these ap-
proaches demonstrate the possibility of using incremental models to counteract
the effects of concept drift on predictive process monitoring, they fail to give
detailed insight into practical challenges and possible implementation, rather
focusing on evaluation of a single approach. Thus, this work discusses various
approaches for implementing online predictive process monitoring, and presents
experimental results when applying them to a real-life dataset.

The remainder of this paper is structured as follows: In section 2, background
and related work is discussed for input into the setup, which is described in
section 3. With this setup, the results are achieved which are described in section
4, and discussed in section 5. Lastly, section 6 concludes and summarizes the
entire work.

2 Background

This section covers three main notions: the domain of predictive process moni-
toring from a BPM and process mining point of view, the components of a PPM
pipeline approach, and the domain of online learning and streaming analytics.

Table 1. Encoding method, adapted from on [22]

Encoding Trace abstraction Numeric Categorical

Last State Last event or attribute As is One-hot

Aggregation All events, unordered Min, max, mean,
sum, std

Frequencies or occur-
rences

Index All events, ordered As is for each index One-hot for each index

2.1 Business processes

As part of any business process, various activities are performed in a specific
order to come to some deliverable for an end-customer. In other words, a pro-
cess leads to some business outcome, which a process is designed around. While
these activities are performed, information systems can be used to support the
activities and, as a byproduct, record data about these activities and the data
associated with each activity, collectively referred to as an event. In this con-
text, we adhere to the definition of an event as a tuple (a, c, t, (d1), . . . , (dm))
consisting of an activity a, a case id c, a timestamp t and ≥ 0 other data at-
tributes d. Case id c denotes a single instance of a process, such as the request of
a single customer within a process. This instance, or case, is uniquely identified
by its case id. When following the events corresponding to just a single case
through the data points collected by the information system, we find a trace of
this case. More formally, if the universe of all events is denoted by ε, a trace is a
non-empty sequence σ = [e1, . . . , en] of events such that ∀i ∈ [1..n] , ei ∈ ε and
∀i, j ∈ [1..n] ei.c = ej .c [24]. In other words, all events in a trace refer to the
same case. Various traces can be combined and collected in an event log. When
data arrives in real-time, a trace can be incomplete: not all data has arrived,
only the first k activities. Then, the trace has a prefix length of k.

By nature of an event log, a single row represents a single event within a trace.
This preserves the sequential nature of information arriving when activities are
performed and allows for sparse data storage as data attributes only need to
be stored for their corresponding activity within a case [13]. This allows for a
wide range of analyses since it is a lossless form of data storage, but also means
that a single row does not include information about previous events in the
trace. When the object of interest is not the individual events (like it may be
in process mining) but instead the trace (and thus the case) as a whole, the
sparseness of the format means that a row does not include much information
about previous events in the trace. Thus, to analyze an entire case at once and
not just the events within them, there is a need to encode information about
previous events and the attributes within the trace as features. Note that there
is a slight mismatch in terminology between data mining literature and PPM
literature: the concept of encoding is known in the data mining literature as
aggregation. Additionally, we make a distinction between attributes of a trace
and features which are encoded attributes. Table 1 describes the main encoding
methods used in state-of-the-art literature on PPM.

The last state encoder encodes the last known value for each attribute (which
is not missing). With the sparse nature of an event log this is not the same as
the current value for each feature: a value is only stored once for an activity,
thus without an encoder a lot of missing values would be found. An aggregation
encoder applies a statistical function to a numeric value, such as the min, max
or mean of the entire attribute over all activities within the case. The index
encoder incorporates the ordering of an attribute, and generates a feature for
each nth value for a certain attribute within that case.

2.2 Online learning

Predictive process monitoring traditionally analyzes historical event logs to sim-
ulate real-time predictions by training a model on a train set from an event log
and then predicting on traces from a test set. In this context, PPM is algorithm-
agnostic and all machine learning models can be used [22]. Recent works have
also explored use of AutoML to automatically do model selection and hyper-
parameter tuning on process datasets [15]. However, when applying PPM in a
practical setting, the data is not an historical event log but instead a data stream
with continuously incoming attributes. Such streaming data might exhibit con-
cept drift over time, resulting in an outdated model. To handle this change,
we look at the domain of stream analytics or online learning, where a model is
continuously updated.

Incrementally learning algorithms, or adaptive models, were designed to han-
dle data that was too large to fit into memory by showing the data to the model
in batches [2]. This leads to one of the properties of adaptive models: they only
need a ’single pass’ of the data to learn, so once the model has seen the data
there is no need to store it for learning purposes. Literature distinguishes five
categories of incremental online learning classifiers: frequency-based, tree-based,
ensemble-based, neighborhood-based, and neural network-based [1–3,5,10]. Naive
Bayes, the most common frequency-based algorithm, knows the independence
assumption, assuming all features are independent of each other given the class,
though in practice it can still perform fairly well even if this assumption does not
hold [21]. Naive Bayes can be used in tree-based algorithms like Hoeffding Trees
as well by having Naive Bayes leaves predict the probabilities for predictions
within a leaf node.

2.3 Delayed learning

In a process, activities are executed one after the other until the case is closed.
In predictive process monitoring, an outcome can be chosen to predict with
machine learning, and before the outcome is known a prediction of that outcome
can be made at each activity. However, once a prediction is made the label is
not known instantly, rather once the case outcome is known. This problem is
known as delayed labeling or verification latency, and is an emerging research
subject [10–12, 16]. In particular, recent works focus on how to measure and
evaluate the performance of predictors in a delayed labeling setting since, for

instance, predictions early on in a sequence are more valuable than predictions
later on in a sequence, which should be reflected in evaluation metrics [11].
This idea of earliness has also been included in PPM literature in the context
of temporal stability, where two metrics were seen as important: how early a
prediction is made within a case and how stable a prediction remains within
that case [23].

In data stream mining, the delay might not necessarily be known a priori,
and might even be infinite [9,16]. A related important characteristic of predictive
process monitoring applications is that the moment a case’s outcome gets known
might differ between processes and even between instances of the same process.
In the ’offline’ learning PPM benchmark study by [22], this is resolved after the
fact by computing the label for each case and adding that label to each event in
the trace. Thereby, the classifier is trained on each individual set of predictors
before the outcome of a case is known. In other words, at each point where the
model makes a prediction, those same predictors are used to train the model. In
a streaming setting this naturally does not work quite as easily since the label
is not yet available for each event.

2.4 Related work

Not much research has looked into predictive process monitoring in an online
learning setting. This section aims to discuss the three works that have, their
conclusions and shortcomings.

First experiments with incremental techniques in PPM were made in [17].
Therein, the effect of concept drift in synthetic event logs is evaluated in experi-
ments with three different algorithms: a simple Hoeffding Tree, Naive Bayes and
a perceptron-based classifier. Major differences between these classifiers were
found, with the perceptron performing worst overall, and Hoeffding Trees able
adapt to concept drift more quickly. They experimented with different encoders,
focusing on different aspects of the data: the control flow and the order of their
activities or the data aspect which corresponds to the case attributes. Their
evaluation was solely based on synthetic datasets. They used temporal perfor-
mance metrics (mean accuracy) of the classifier improving over time, but did
not evaluate the performance of the classifier at different points within a case.

This was extended in [8] by experiments on real and synthetic datasets.
Therein, a clustering-based update logic is used, by adapting the concept of
bucketing : using different models for different kinds of traces. One such imple-
mentation is to cluster the traces based on their attributes and use different
classifiers for each cluster. They also experimented on two real datasets apart
from the synthetic logs. They did not use incremental models but rather batch-
updates: the model was updated three times during the overall event log dura-
tion. They used the F1 score and accuracy as measures, also not evaluating the
performance at different point within a case. They only compared a Hoeffding
Tree and an Adaptive Hoeffding Tree as the used classifiers.

The most recent contribution towards online PPM is [20], using LSTM neu-
ral network models to predict the next activity. Since the prediction target for

next activity prediction and the pre-processing and encoding methods for neural
networks are much different from the general PPM case, their results are not
further evaluated.

2.5 Contribution

This work aims to contribute to online predictive process monitoring by eval-
uating the effectiveness of a general online PPM framework compared to the
state-of-the-art PPM benchmark study by [22]. We define a conceptual model
of a general PPM pipeline and its different components such as encoding, al-
gorithms and train set generation, and the interaction thereof. Lastly, we aim
to evaluate the results from an experimental setup with different configurations
which is made available on GitHub.

3 Illustration

Figure 1 shows a basic timeline of steps in a streaming PPM framework over
time. Here, an activity is denoted a, timestamps are denoted t and the encoded
trace of activity a and its data attributes is denoted E(a). As events are executed,
an outcome within the case can be predicted for each event. For this, the current
event trace is encoded after which the model is able to make a prediction.

After a prediction it generally takes an additional number of steps until
the outcome is known. During these steps, initially missing values can be filled
and attributes updated. Intuitively, the closer to the outcome, the better the
prediction will be as there is more input data available, but the sooner the
prediction the more useful. In that sense, there is a trade-off between the earliness
of a prediction versus the quality, as described in more detail in [23]. Once the
desired outcome is known, in fig. 1 at activity a6, the model is trained using the
encoded trace of the case thus far, E(a5). Once the outcome is known and the
model is trained, there is no need to predict or train since the known outcome
can be retrieved. This generic definition of the outcome allows for intermediate
outcomes, which appear somewhere in the case, or final outcomes, which denote
the end of a case. Also, by rolling back in the trace, the state at previous instances
of the case can be reconstructed, which can be used to augment the training
set with additional instances and make it more representative (see fig. 5). For
example, less attribute values may be known at earlier stages, or certain value
may always be overwritten after a certain stage.

In the context of online PPM, there are two general actions with a new event:
either the model predicts the cases’ outcome, or the outcome is known and the
model is trained to include the now known outcome. Additionally, if the model
has already been trained on a trace and thus the outcome is already known, no
actions need to be taken. This could be instantiated using, for example, an API
call, where the returning value would always be an outcome and the model is
trained in the background if possible. This concept is visualized in fig. 2 from
the view of listening for new events to be recorded from an event stream.

time

start a1 a2 a3 a4 a5 a6 a7 end

t1 t2 t3 t4 t5 t6 t7 t8 t9

P(1) =
0.5

P(1) =
0.3

P(1) =
0.4

P(1) =
0.7

P(1) =
0.8 Train

Encode &
predict

Encode &
predict

Encode &
predict

Encode &
predict

Encode &
predict

Case accepted:
outcome = 1

!()!) → & = 1

Fig. 1. PPM timeline

Event stream

New event Seen?

Return
known
label

Label
(check)

New
label?

Train

Predict

Return
outcome

Fig. 2. Event stream

To train the model, a sequence of steps visualized in fig. 3 is executed. First,
the label is computed using some labeling function. Next, the encoding of the
current trace is retrieved. To avoid leaking variables, these encodings are not
updated but just retrieved from memory. With the encoded trace retrieved, the
model can be trained after which the case id can be added to a list of ’seen’ cases
so the model does not need to be trained on the same case again of more data is
recorded after the outcome. Lastly, since the model has already been trained on
the case, the encoders are no longer necessary and can be removed from memory.

Train

Label
(get)

Get
encoded

trace

Train
model

Add case
to seen

Delete
encoder

group

Fig. 3. Train phase

To predict the outcome of a case, the current trace is to be encoded us-
ing some subset of encoders. The encoded trace can then be used to make a

prediction about the cases’ outcome, which is stored to evaluate and calculate
prediction metrics.

Predict

Encode
trace

Predict
with

model

Add to
prediction

list

Fig. 4. Predict phase

4 Setup

Since [8] and [17] focused mainly on 1) a comparison of different streaming
algorithms and 2) the effects of concept drift on PPM, this research acknowl-
edges these results and instead focuses on how to implement these algorithms
supporting concept drift in an algorithm-agnostic learning pipeline approach.
Ideally, utilizing a proper pipeline approach transforms a PPM problem into a
regular incremental learning approach, where feature construction in the form
of encoding and labeling are the main problems to cover. The pipeline should
cover the situation that there is typically a delay on capturing feedback for the
outcome.

For the setup, online learning Python library River was used [19]. River al-
lows for most of the required components for an online PPM pipeline, such as
incremental streaming algorithms, advanced pipeline features, real-time prepro-
cessing, transformers, and evaluation functions. However, some PPM-specific
aspects are not typically covered in traditional data mining libraries and are
thus not found in the River library so they had to be custom-built. These com-
ponents, along with all the code used for this work, can be found on our GitHub
page3.

4.1 Encoding and data preparation

As described in table 1, different encodings for a given trace can be generated to
represent a trace as one tabular row. Some of these are readily available as simple
statistic functions, such as min, max, mean, count or variance. For PPM, other
non-traditional encoders are utilized as well, such as index encoders, last state
encoders or more complex encoders to generate multiple features from a single
attribute such as a timestamp. Additionally, while literature did not mention

3 https://github.com/ICPM-submission/Online-Predictive-Process-Monitoring

including a first state encoder, it records the first non-NA value for a given at-
tribute. An implementation of these encoders as River-compatible transformers
can be found on the Github repo under StreamPPM/custom components.

Most PPM literature evaluates encoders by using an encoder on one or mul-
tiple attributes. However, it is also possible to apply encoders the other way
around: by applying one or more encoders to a single attribute. For instance, it
may be of interest to consider the last resource who worked on a case but also the
total number of resources who worked on the same case. This leaves a significant
search space of encoders: the number of encoders × the number of attributes. In
principle, encoders could also be parameterized, such as by a time window size
for an aggregator, expanding the search space even more. Therefore, a selection
of encoders should be made to reduce the complexity. In the current setup, this
is done by creating an Excel template whereby each encoder is mapped to each
attribute and their compatibility is given (aggregation encoders only apply to
numerical variables, for example). These encoder objects can then be generated
in the pipeline setup.

For data pre-processing the proper variable types are given for a dataset,
the timestamps are parsed, categorical variables are one-hot encoded by default
and numerical variables are scaled. Note that the type conversion and times-
tamp parsing are executed before encoding, while one-hot encoding and scaling
are applied after encoding. Additionally, features based on timestamps can be
generated as also generated in the benchmark dataset by [22]. These additional
features are referred to as time features in the remainder of this work. Lastly,
if value occurrence labeling is used, the feature in which the label is eventu-
ally found should be discarded when training the model as to avoid any leaking
predictors.

4.2 Labeling function

Processes are typically not created with a prediction purpose, thus there is no
clear ’label’ attribute. To have a y for the model to train on, a labeling function
is needed. This has been implemented as an abstract Python class with two
functions: check whether the label is in the current data instance and get the
label if it is in the current instance. Currently this labeling function only supports
value occurrence as a label, which evaluates the activity column and has some
pre-determined outcome activities, based on which the final label is determined
to be either positive or negative. For instance: a loan request can be accepted,
cancelled or denied. The labeling function evaluates whether the current activity
is one that either accepts, cancels or denies the case and if it is, determines the
label (positive if the activity is accepted, negative if otherwise).

4.3 Evaluation

Evaluation of PPM predictions is not trivial since multiple predictions are made
within a single case. If one metric such as AUC were used over all of the predic-
tions, it would be naturally skewed towards longer cases where more observations

time t1 t2 t3 t4 t5 t6 t7 t8 t9

P(1) =
0.5

P(1) =
0.3

P(1) =
0.4

P(1) =
0.7

P(1) =
0.8 Train

Encode &
predict

Encode &
predict

Encode &
predict

Encode &
predict

Encode &
predict

Case accepted:
outcome = 1

!(#!)
!(#")
!(##)
!(#$)
!(#%)

→
→
→
→
→

& = 1
& = 1
& = 1
& = 1
& = 1

start a1 a2 a3 a4 a5 a6 a7 end

Fig. 5. Timeline with feature rollback

are made. Therefore we use an evaluation method also used in [22] which com-
putes the AUC over all cases for a given prefix length. Thus, a prediction is made
for each activity in each case up until the label is known, and afterwards the
AUC is calculated for each prefix length. AUC, or Area Under the Curve, is an
appropriate metric because it remains unbiased even on an imbalanced distri-
bution of class labels, and is threshold-independent. AUC scores are generally
between 0.5 and 1, where an AUC of 0.5 is purely random and an AUC of 1 is
a perfect classifier which is always correct.

4.4 Rollback

In offline predictive process monitoring, such as the approach by [25], a label is
determined once it is known and then added as a feature over all of the activities
in the trace. In a streaming setting this is not possible because there is no way
to tell the label before seeing it. By encoding and waiting until we see the label
in the data somewhere we can train the model, but we only train the model
with data that is fully encoded, based on a fully completed trace. However, since
encoders incrementally grow with newer data, at some point every state of the
encoded process is stored. By storing each version to the encoded variables, we
can keep track of ’versions’ of the variables. At training time, by simply iterating
through every version of our variables and training the model on each version,
the model is also trained on incomplete traces in an attempt to improve the
generalizability of the model when it sees incomplete traces in the prediction
phase. This does not change the made predictions and thus the test set, but
only adds incomplete training samples to the train set of the classifier.

5 Results

This section describes the results from applying the streaming PPM pipeline to
a real dataset. For this, the BPIC dataset from 2017 was used for its number

of cases and richness of attributes [27]. Additionally, since the BPIC17 dataset
was used in the benchmark study by [22], the results can be well compared. As a
prediction target, the loan offers are considered, where a positive label equals the
activity ”O Accepted” in the activity column, and a negative label containing
”O Cancelled” or ”O Denied”. As preprocessing, categorical variables were one-
hot encoded, and numerical variables scaled using River’s built-in functions. To
validate the learning pattern and the performance of the algorithm, Adaptive
Random Forest (ARF) was applied with various encoding methods to establish
benchmark performance and a comparison to that of [22]. For reference, fig. 6
shows the aggregation of the number of activities before the outcome is known
for each case. From this it leads that the majority of cases have fewer than 30
activities until their outcome is known.

0

10000

20000

30000

0 20 40 60
Activities before outcome

N
um

be
r

of
 c

as
es

Fig. 6. Most cases have fewer than 30 activities before the outcome is known

From fig. 7, it is clear that some form of encoding is necessary. A simple
baseline that iterates over the data and only uses the attributes corresponding
to the current event gives a consistent AUC of 0.5 (guessing based on last event
only). A better approach is to use the latest available (non-missing) data. This
corresponds to ARF, last state, which iterates over the data and remembers the
last known value for each attribute within the current trace. However, in our
experiments with ARF, this improves AUC, but not beyond 0.65. Only using
the first known value of each attribute yields a better prediction performance
over nearly all prefix lengths than only considering the last known value for
each attribute, especially early on in a process. ’Encoder subset’ is a subset of
encoders combining multiple encoders such as first and last state, aligning with
state-of-the-art approaches in PPM literature. This encoder combination seems
to predict better over longer cases than first state and last state individually,
but performs slightly worse over shorter cases than the first state encoder.

Figure 8 introduces the concept of feature rollback with the ARF classifier to
both the custom encoder subset and the last state encoder. Rollback for a first
state encoder would only introduce missing values, thus is not included. From
these results, feature rollback does not seem to improve performance for ARF

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●

●
●

● ●
● ●

●
●

●

●
● ● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ●
●

●

●

● ● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

● ●

●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●
● ●

● ●

●

● ● ●

●

●

●

●

● ● ● ● ●

●
●

●

●

●

●

●

●
●

●
● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
● ●

●
●

●
●

● ● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ● ●
● ● ● ●

●
●

● ● ●
●

● ●
●

● ● ●
●

●
●

●
●

● ● ● ●
●

● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●
●

●

● ●

●

●

●

●

●
●

●
●

●

●
● ●

● ● ●

●

●
●

●

●

●

0.5

0.6

0.7

0.8

0 20 40 60
Prefix length

A
U

C

● ● ●

● ● ●

ARF, first state ARF, first state + time ARF, last state

ARF, last state + time ARF, No encodings ARF, subset

Fig. 7. Performance for different encoders
with ARF

●

●

●

● ●

●

●

● ●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●

●
●

● ●
● ●

●
●

●

●
● ● ● ● ● ● ● ● ●

● ● ● ●

●

● ● ●
●

●

●

● ● ●
●

●
●

● ● ● ● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●
●

●

● ●

●

●

●

●

●
●

●
●

●

●
● ●

● ● ●

●

●
●

●

●

●

● ● ● ● ●

● ●
●

●
●

●
●

●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ●
●

0.5

0.6

0.7

0.8

0 20 40 60
Prefix length

A
U

C

● ●

● ●

ARF, last state + time ARF, last state + time + rollback

ARF, subset ARF, subset + rollback

Fig. 8. ARF performance with and without
rollback

●

●

●

● ●

●

●

● ●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●
●

● ● ●
● ●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●

● ● ●
● ●

●

● ● ● ● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ● ●

●

●
●

●

● ●
●

● ● ●

●
● ●

●

● ●
●

●
● ●

●

●
●

●
● ● ●

● ●
● ● ●

●
●

●

● ●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
● ●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

● ●

● ●
●

● ●
● ●

●
●

●
● ● ● ●

● ●
●

● ●
●

●
● ●

● ● ● ●
●

●

●
● ●

● ●
●

● ● ● ● ●

● ●

●

●

●

●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ●
● ● ●

●
●

●
● ● ●

0.5

0.6

0.7

0.8

0.9

0 20 40 60
Prefix length

A
U

C

● ● ●

● ● ●

ARF, subset ARF, subset + rollback GNB, subset

GNB, subset + rollback HAT, subset HAT, subset + rollback

Fig. 9. Performance of various algorithms
with encoder subset

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ● ●

●

●
●

●

● ●
●

● ● ●

●

● ●

●

● ●
●

●
● ●

●

●
●

●
● ● ●

● ●
● ● ●

●
●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ● ●

●

●

●
●

●

●

●
●

● ●
● ● ●

●
●

● ●
●

● ●
●

●
●

● ● ●
●

● ● ● ● ●
●

● ● ● ● ●
●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●
●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
● ●

● ●
● ● ●

● ● ● ● ●

● ●
●

●

●
●

●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
● ● ●

0.5

0.6

0.7

0.8

0.9

0 20 40 60
Prefix length

A
U

C

● ● ●

● ●

GNB, first state + time GNB, last state + time GNB, last state + time + rollback

GNB, subset GNB, subset + rollback

Fig. 10. Performance for different encoders
with Gaussian Naive Bayes

with encoder subsets or only using the last state encoder. The performance of
the feature rollback predictions is more stable and consistent over different prefix
lengths.

Figure 9 shows the performance of three different algorithms: ARF, Hoeffd-
ing Adaptive Tree (HAT) classifier and Gaussian Naive Bayes (GNB), with and
without rollback. As the results show, without rollback, Random Forest has the
best performance, Hoeffding Adaptive Tree performs slightly worse and Naive
Bayes performs worse than that. With feature rollback however, Naive Bayes
scores better than every other classifier for all prefix lengths. Again, the per-
formance is slightly more stable over the different prefix lengths. There is no
clear single reason why Naive Bayes stands out, but in general it is known that
at times it can perform surprisingly well on real world learning problems, even
if the conditional independence assumption is violated [6, 21]. Since GNB sud-
denly performs much better than all other classifiers, fig. 10 again evaluates the
performance for different encoders, this time using GNB.

As shown in fig. 10, the first state encoder seems to perform quite poorly while
the last state encoder performs slightly better, with feature rollback improving

performance. The encoder subset with feature rollback performs significantly
better than the encoder subset without rollback.

6 Discussion

The learning curve of the results from the online PPM approach seem to match
the results of [22] quite well: on the same dataset, they found an uptick in
prediction performance after around 5 events, after which it slowly increased
towards higher performance. While their total AUC value was slightly higher,
this could be due to slight differences in the used algorithms (XGBoost vs ARF).
From this, it seems that the online learning approach is able to learn the same
patterns as the benchmark study, with the added benefits of using adaptive
models.

Because all of the preprocessing, encoding and labeling is performed in real-
time, when simulating an online setting by iterating through a dataset, the time
complexity is quite high. Adding feature rollback increases the time complexity
by a factor of two to three. Depending on the configuration of the pipeline we
regularly achieved speeds of between 400 and 1600 rows per second on a 2017
MacBook Pro with a 2,8 GHz Quad-Core Intel Core i7 and 16 GB of 2133MHz
LPDDR3 RAM.

While the results show a similar learning curve to the benchmark study,
further experiments with different encoders and algorithms lead to interesting
results. For one, it is counter-intuitive that the first known value for a given value
can have a higher predictive value than the last, most up-to-date value. While
this effect does not always hold, it does show the need to experiment with the
different encoders for a specific situation. The likely cause of this phenomenon is
that the first part of a case has a different data distribution from the last. In that
case, the first state encoder can be expected to perform better in small prefix
sizes because the model is also trained on data from early on in the process,
while the last state encoder is trained on the final state of a process, with the
possibility of variables being overwritten in the meanwhile.

Other influential variables are algorithm choice and feature rollback: the com-
bination of which can differ quite a lot, with last state encoders actually per-
forming better with Naive Bayes and rollback being quite effective using Naive
Bayes but under-performing when using ARF. A possible explanation of this
effect is that ARF is able to better generalize the data to different variables
by its tree structure, while Naive Bayes does not consider the relations between
variables. By applying feature rollback the model is more smoothed out and does
not need to make this generalization itself. These results do not give definitive
proof that one is better than the other, but does show one should not make
assumptions about which encoder, algorithm pair to use and whether feature
rollback is effective.

7 Limitations & Future Work

This section describes the limitations of the current approach and several op-
portunities for directions of future research.

– The results show that the performance is quite dependent on the choice of
encoders. Future work could focus on selecting applicable encoders from the
search space of encoders for each attribute. Advancements in the field of
Meta-learning could be applied here to learn patterns in the datasets which
lean to certain encoders.

– An explanation of the relatively poor performance of the last state encoder
are differences in the data distributions between the beginning of a case
versus later on. Literature utilizes the concept of bucketing to deal with
these different distributions by using a different model for different stages
of the process, i.e. one for the beginning and a different model for the end
of the case. It would be an interesting addition to an online predictive pro-
cess monitoring pipeline to evaluate the effectiveness of different bucketing
techniques.

– The current pipeline assumes that the label does not change after the model
is trained on the case, and ignores all data after the label is known. In
some applications, multiple labels may be known (i.e., first rejected but
later accepted). Incorporating this effect could be an interesting addition for
future research towards online PPM.

– By nature of a process, attributes arrive sequentially in a certain order. This
makes the model quite dependent on the current attributes and the order
thereof. To move more towards prescriptive process monitoring, future work
could focus on process design improvements based on predictive features in
regards to the outcome. Features with a highly predictive value could be
moved forward in the process as to improve the early predictive power of
machine learning models.

– Decisions in a process seldom depend on just a single predicted KPI, and
background constraints and knowledge also need to be taken into account.
Decision logic can be used to combine models for different KPIs with business
rules, weightings and policies for more sophisticated real time decisioning.

8 Conclusion

Our results show that an online predictive process monitoring pipeline can
achieve similar results as the benchmark ’offline’ approach achieves. Further-
more, we show that different combinations of encoders, algorithms and feature
construction can lead to unexpected results. To still achieve good results, it is
therefore necessary to experiment with these different components in different
scenarios. We provide an online PPM pipeline which allows for these experiments
in a simple way using Python.

References

1. Antonakis, A.C., Sfakianakis, M.E.: Assessing näıve Bayes as a method
for screening credit applicants. Journal of Applied Statistics (2009).
https://doi.org/10.1080/02664760802554263

2. Bahri, M., Bifet, A., Gama, J., Gomes, H.M., Maniu, S.: Data stream analysis:
Foundations, major tasks and tools (2021). https://doi.org/10.1002/widm.1405

3. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 7th SIAM International Conference on Data Mining (2007).
https://doi.org/10.1137/1.9781611972771.42

4. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in
process mining. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2012).
https://doi.org/10.1007/978-3-642-34156-410

5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceeding of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2000). https://doi.org/10.1145/347090.347107

6. Domingos, P., Pazzani, M.: On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Machine Learning 29(2), 103–130 (1997).
https://doi.org/10.1023/A:1007413511361, https://doi.org/10.1023/A:

1007413511361
7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of

Business Process Management. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-33143-5, http://link.springer.com/

10.1007/978-3-642-33143-5
8. Francescomarino, C.D., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incre-

mental predictive process monitoring: How to deal with the variability of real
environments (2018)

9. Frederickson, C., Polikar, R.: Resampling Techniques for Learning Under Extreme
Verification Latency with Class Imbalance. In: 2018 International Joint Conference
on Neural Networks (IJCNN). pp. 1–8. IEEE (2018)

10. Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enembreck, F., Pfharinger, B.,
Holmes, G., Abdessalem, T.: Adaptive random forests for evolving data stream
classification. Machine Learning (2017). https://doi.org/10.1007/s10994-017-5642-
8

11. Grzenda, M., Gomes, H.M., Bifet, A.: Performance measures for evolv-
ing predictions under delayed labelling classification. In: Proceedings
of the International Joint Conference on Neural Networks (2020).
https://doi.org/10.1109/IJCNN48605.2020.9207256

12. Hofer, V., Krempl, G.: Drift mining in data: A framework for addressing drift in
classification. Computational Statistics and Data Analysis 57(1), 377–391 (2013)

13. IEEE: IEEE Standard for eXtensible Event Stream (XES) for Achieving Interop-
erability in Event Logs and Event Streams. IEEE Std 1849-2016 pp. 1–50 (2016).
https://doi.org/10.1109/IEEESTD.2016.7740858

14. Karimi, J., Somers, T.M., Bhattacherjee, A.: The impact of ERP implementation
on business process outcomes: A factor-based study. Journal of Management In-
formation Systems (2007). https://doi.org/10.2753/MIS0742-1222240103

15. Kas, S., Post, R., Wiewel, S.: Automated Machine Learning in a Process
Mining Context. International Conference for Process Mining (ICPM) 2020
p. 25 (2020), https://icpmconference.org/2020/wp-content/uploads/sites/

4/2020/10/ICPM_2020_paper_44.pdf

https://doi.org/10.1080/02664760802554263
https://doi.org/10.1002/widm.1405
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1007/978-3-642-34156-4_10
https://doi.org/10.1145/347090.347107
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1007/978-3-642-33143-5
http://link.springer.com/10.1007/978-3-642-33143-5
http://link.springer.com/10.1007/978-3-642-33143-5
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1109/IJCNN48605.2020.9207256
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.2753/MIS0742-1222240103
https://icpmconference.org/2020/wp-content/uploads/sites/4/2020/10/ICPM_2020_paper_44.pdf
https://icpmconference.org/2020/wp-content/uploads/sites/4/2020/10/ICPM_2020_paper_44.pdf

16. Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V.,
Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., Stefanowski, J.: Open challenges
for data stream mining research. ACM SIGKDD Explorations Newsletter (2014).
https://doi.org/10.1145/2674026.2674028

17. Maisenbacher, M., Weidlich, M.: Handling Concept Drift in Predictive Process
Monitoring. In: Proceedings - 2017 IEEE 14th International Conference on Services
Computing, SCC 2017 (2017). https://doi.org/10.1109/SCC.2017.10

18. Marquez-Chamorro, A.E., Resinas, M., Ruiz-Cortes, A.: Predictive monitoring of
business processes: A survey. IEEE Transactions on Services Computing (2018).
https://doi.org/10.1109/TSC.2017.2772256

19. Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R.,
Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T., Bifet, A.: River: machine
learning for streaming data in Python (2020)

20. Pauwels, S., Calders, T.: Incremental Predictive Process Monitoring: The Next Ac-
tivity Case. In: Business Process Management. Springer International Publishing
(2021), https://www.researchgate.net/publication/352508887_Incremental_

Predictive_Process_Monitoring_The_Next_Activity_Case

21. van der Putten, P., van Someren, M.: A Bias-Variance Analysis of a Real World
Learning Problem: The CoIL Challenge 2000. Machine Learning 57(1/2), 177–
195 (oct 2004). https://doi.org/10.1023/B:MACH.0000035476.95130.99, http://
link.springer.com/10.1023/B:MACH.0000035476.95130.99

22. Teinemaa, I.: Predictive and prescriptive monitoring of business process outcomes.
In: CEUR Workshop Proceedings (2019)

23. Teinemaa, I., Dumas, M., Leontjeva, A., Maggi, F.M.: Temporal stability in predic-
tive process monitoring. Data Mining and Knowledge Discovery 32(5), 1306–1338
(sep 2018). https://doi.org/10.1007/s10618-018-0575-9, http://link.springer.

com/10.1007/s10618-018-0575-9

24. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-
oriented predictive process monitoring: Review and benchmark (2019).
https://doi.org/10.1145/3301300

25. Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Alarm-based pre-
scriptive process monitoring. In: Lecture Notes in Business Information Processing
(2018). https://doi.org/10.1007/978-3-319-98651-76

26. Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Foundations of
Prescriptive Process Monitoring. CoRR abs/1803.0 (2018), http://arxiv.org/
abs/1803.08706

27. Van Dongen, B.F.: BPI Challenge 2017 (2017).
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b, https:

//data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884

28. Van Dongen, B.F.: BPI Challenges (2021), https://www.tf-pm.org/

competitions-awards/bpi-challenge

29. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process
monitoring for recommending next best actions. In: Lecture Notes in Business
Information Processing (2020). https://doi.org/10.1007/978-3-030-58638-612

https://doi.org/10.1145/2674026.2674028
https://doi.org/10.1109/SCC.2017.10
https://doi.org/10.1109/TSC.2017.2772256
https://www.researchgate.net/publication/352508887_Incremental_Predictive_Process_Monitoring_The_Next_Activity_Case
https://www.researchgate.net/publication/352508887_Incremental_Predictive_Process_Monitoring_The_Next_Activity_Case
https://doi.org/10.1023/B:MACH.0000035476.95130.99
http://link.springer.com/10.1023/B:MACH.0000035476.95130.99
http://link.springer.com/10.1023/B:MACH.0000035476.95130.99
https://doi.org/10.1007/s10618-018-0575-9
http://link.springer.com/10.1007/s10618-018-0575-9
http://link.springer.com/10.1007/s10618-018-0575-9
https://doi.org/10.1145/3301300
https://doi.org/10.1007/978-3-319-98651-7_6
http://arxiv.org/abs/1803.08706
http://arxiv.org/abs/1803.08706
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://www.tf-pm.org/competitions-awards/bpi-challenge
https://www.tf-pm.org/competitions-awards/bpi-challenge
https://doi.org/10.1007/978-3-030-58638-6_12

	Towards best practices for online predictive process monitoring

