
PErrCas: Process Error Cascade Mining
in Trace Streams

Anna Wimbauer, Florian Richter, and Thomas Seidl

Ludwig-Maximilians-Universität München, Munich, Germany
a.wimbauer@campus.lmu.de, {richter, seidl}@dbs.ifi.lmu.de

Abstract. Efficient and quick detection of problems is an essential task
in online process monitoring. Many anomaly detection approaches excel
in finding local deviations. We propose a novel approach that tracks local
deviations over multiple process instances and visualizes correlations of
deviation points. PErrCas provides knowledge about current cascades
of deviations to give process analysts a starting point for rational root-
cause analysis if processes leave their in-control parameters. PErrCas
monitors deviations online and maintains cascades of varying timespans.
Hence, our approach avoids defining an observation window beforehand,
which is a significant advantage due to its impracticability to predefine
expected cascade properties in exploratory scenarios.

Keywords: Anomaly Detection · Cascades · Trace Streams

1 Introduction

Anomaly detection has multiple applications in process mining. The most promi-
nent scenario is conformance checking, where misbehavior of process instances
is measured against a reference process model by techniques like token replay
or alignments. The identified anomalies represent structural non-compliances in
comparison to previous or planned executions. Temporal deviations are another
focus for process anomaly detection since detecting unexpected delays or speed-
ups often provides a starting point for thorough investigations. Fraud, failures,
or inefficient resource usage are only a few root causes for deviations.

While the research community has published a rich collection of techniques
to detect various anomalies, most works focus explicitly on correlations within
cases and neglect interferences between different cases. Whether it be customer
journeys, production cycles, or sequences of administrative actions, cases are
handled as independent process executions, and explanations for anomalies in a
case are usually expected to be caused by previous events in the same case. How-
ever, cases share a resource pool containing staff, machinery, or infrastructure.
Restricting a root cause analysis to singular cases might fail if another instance
has caused an issue and subsequent cases are affected by its effects. We differ
between local anomalies, isolated within a singular case, and global anomalies,
which originate in a particular case of an event and spread through the process
using common tie points between cases.



2 A. Wimbauer et al.

This work presents a novel online approach to identify process error cascades
in a trace stream. Error cascades are typically not artificially implemented in
processes. Since many processes contain a dynamic resource scheduling, e.g., the
staff is assigned depending on current situations like workload or environmental
influences, static cascade knowledge has limited value. Error cascades have two
additional properties besides their various lifetimes, defined as the timespan
between the actual event and the last moment that the cascade influences events.

Many cascades affect only structurally subsequent events according to the
process. E.g., delayed transporters in logistic processes delay following trans-
ports, which might delay further transports waiting for the first segment. In
specific processes, deviations may cause feedback in the process. Delays in pro-
duction processes often cause previous and following actors to traverse into idle
states. Depending on the process design, this allows preponing of cases in con-
trast to their scheduled execution. If the processes do not allow resources real-
location, previous actors also switch to a delay status.

The remaining important property of cascades is complexity. Typically, most
cascades contain only a few correlated actions. Complex cascades with long cor-
relation chains of affected actions are infrequent but provide valuable insights
for later investigations. Large distances between root causes and detected devi-
ations are typical scenarios where manual analysis fails to establish the causal
connection.

2 Related Work

Correlations between different database objects have been extensively researched
in the domain of sequential pattern mining[5]. Regarding sequential pattern min-
ing on data streams, traditional SPM algorithms are required to overcome mem-
ory and performance restrictions and are therefore not always suitable to be
applied on data streams directly. Marascu and Masseglia [9] propose an approx-
imate algorithm called SMDS (Sequence Mining in Data Streams) primarily
designed for Web usage data streams that can handle the complexity of stream-
ing data. In their approach, user transactions are processed in batches. For each
batch, the users are clustered based on their surfing behavior adding users to
the most similar cluster or creating a new cluster. In [7], [14] research on online
sequential pattern mining is continued. However, this research direction focuses
on totally ordered sequences. Event-based processes allow concurrent executions
of events, and anomalies are propagated non-linearly due to the process com-
plexity. Moreover, we consider if two anomalies happen close in time to declare
a correlation, while temporal intervals are usually neglected in sequence mining.

In the field of spatio-temporal data mining deep learning methods are used
to learn traffic flow correlations to predict future traffic flow [6], [13]. Since those
methods depend on the spatial features and processes mostly neglect spatial
data while focusing on structural positions in the process, the approaches are not
directly applicable for our use case. Even if event logs include spatial data, this
information might not be relevant for the causal relationship between outliers.



PErrCas: Process Error Cascade Mining in Trace Streams 3

In Liu et al. [8] the authors aim at finding causal interactions between traffic
outliers by constructing outlier causality trees and running a frequent subtree
mining algorithm on them. Toosinezhad et al. [12] applied these ideas for process
mining. The authors are the first to solve a significant task, as the origins of
process failures are not always found within the same process instance since the
real world is interconnected. Their approach does not consider anomalies for each
case individually but anomalies over various cases and their correlations. Hence,
Toosinezhad et al. proposed a method to tackle this challenge and introduce a
novel perspective of process anomaly detection.

As cases proceed in a process, their irregular behavior might disrupt the en-
tire system causing further anomalies. Toosinezhad et al. divide the dataset into
batches and construct one cascade graph per batch. The partitioning into spe-
cific intervals, like weeks, requires prior knowledge of certain cascade properties.
Instead, we expand our cascades incrementally without batch restrictions. We
create new cascades when incoming outlier events are not correlated to already
identified cascades. Finally, we cluster the constructed cascades to give general-
ized cascade patterns, allowing quicker analysis by emphasizing the prominent
structures.

The Performance Spectrum miner presented in [3] uses a descriptive analysis
to reviel performance patterns. In [11] Senderovich et al. use both intra- and
inter-case features to predict case properties. However, to the best of our knowl-
edge, Toosinezhad et al. proposed the only work on detecting anomaly cascades
in processes so far.

3 Preliminaries

The proposed method is applied to trace streams. A trace stream S : N → N
is a mapping from natural numbers to the case identifier domain. Such a trace
stream can be efficiently generated from an event stream, as already described
in [10]. On case-level, each case contains finitely many events.

Definition 1 (Case-Level Event). A case-level event e is a tupel e = (c, a,
t) containing a case identifier #case(e) = c, an activity label #activity(e) = a
and a timestamp #time(e) = t. The case-level event may also contain additional
attributes.

Regarding intervals between case-level events, we define segment-level events.
These are then aggregated into cascades which are modelled as graphs and rep-
resent the causal dependencies on the process level.

Definition 2 (Segment-Level Event). A segment-level event s is a tupel s
= (sn, c, st, et) containing a segment-name #segment(s) = sn, a case identifier
#case(s) = c, a start-time #start(s) = st and an end-time #end(s) = et. Ev-
ery segment-level event s is composed of two case-level events ei and ej, where
#case(ei) = #case(ej) = c, (#activity(ei),#activity(ej)) = sn, #time(ei) = st
and #time(ej) = et. It must hold that #time(ei) < #time(ej) and there is no ek
with #case(ek) = c such that #time(ei) < #time(ek) < #time(ej).



4 A. Wimbauer et al.

Activity A c1

c1

c1

c2

c2

c2

c3

c3

c3

c3

c2

c1

2021-01-07T
12:00:00

2021-01-07T
20:00:00

2021-01-08T
04:00:00

2021-01-08T
12:00:00

2021-01-08T
20:00:00

Activity B

Activity C

Activity D

Fig. 1: Example process time line

Definition 3 (Error Cascade). An error cascade is a directed graph g = (V,
E), where each node n in V represents a set of outliers S = s1, · · · , sk in one
segment #segment(s1) = · · · = #segment(sk). There is an edge from node ni to
nj, if outliers in nj are correlated to preceding outliers in ni.

Each node has a heat value that gives information about the last time an
outlier occurred in this segment. It is computed as an exponentially moving
average to consider all past segment-level event outliers aggregated in this node.
We declare a node as active if the time difference between the starting time of
the current outlier and the heat value of the node is lower than a predefined
activity threshold tha. The activity threshold defines the time span in which we
assume two outliers to be correlated. If the activity threshold is one day, an
outlier can affect the process performance for one day. Henceforth, if the time
difference between the heat value and a new outlier is greater than the activity
threshold, a causal relationship between the outlier set of that node and the new
outlier is impossible. We call a cascade active as long as at least one of its nodes
is still active.

4 Online Cascade Mining

In this section, we define the three main steps of our method. Our approach oper-
ates on trace streams. We first scan for process segments that take an unusually
long (or short) time for each incoming trace. We then check for each outlier if
it is correlated to an already existing active cascade, in which case we add the
outlier to the correlated cascade. If it is not correlated to an existing cascade, the
outlier forms the start of a new cascade. These first two steps are performed on
each trace consecutively. The last step is carried out in an offline phase once a set
of cascades has accumulated. We cluster the cascades and compose all cascades
in one cluster to a cascade pattern.

4.1 Outlier Segment-Level Events

For each incoming trace, we generate the segment-level events from consecutive
case-level events and search for temorally deviating segment-level events. Fig. 1
shows an example process with four activities A, B, C, and D. Cases c1, c2 and



PErrCas: Process Error Cascade Mining in Trace Streams 5

c3 arrive shortly after one another and traverse through the process at different
paces. Every circle on the timeline symbolizes a case-level event. It means, e.g.,
that case c1 underwent activity A at 12:35 on the seventh of January 2021. Since
there are four successive activites, we have three segment-level events per case:
A:B, B:C and C:D. All three cases transition from activity A to activity B fairly
quickly, then c1 gets delayed in segment B : C. This leads to further delays of
case c2 in segment C : D and case c3 in segment B : C. We can already see that
segment-level events B:C - c1, C:D - c2 and B:C - c3 will be marked as outliers.

Formally we declare a segment-level event an outlier if its z-score Z(s) =
∆t−µsegment

σsegment
is higher than a certain outlier threshold tho. With ∆t = #end(s)−

#start(s) being the duration of the segment-level event. The mean µsegment, the
variance σ2

segment and the number of events per segment ksegment are stored for
each segment and updated with every incoming segment-level event.

4.2 Error Cascade Construction

When a new outlier arrives, we check whether it correlates to any currently active
cascades. In this case, it is ”added” to this cascade. If an outlier is not correlated
to an active cascade, a new cascade is started. Over time older cascades become
inactive node by node, and new cascades are started and built up. If an outlier
segment-level event s and a cascade fulfill one of the two following cases we
assume that they are correlated.

1. Segment-level event s belongs to the same segment as a node n in the cascade
and #start(s)−#heat(n) < tha. The cascade already includes a set of outliers
in the same segment that is still active, in a sense that the time difference
between heat value and starting time of the outlier does not exceed the
activity threshold. In this case, outlier s is added to node n by increasing the
event counter by one and updating the heat value: #new

heat(n) = #start(s) −
[0.25 · (#start(s)−#old

heat(n))]
2. Segment-level event s and a node n in the cascade share a common activity

and #start(s) − #heat(n) < tha. Since outlier segment-level event s and
the outliers of node n are close in time and overlap in their segments, we
assume that the anomalous behaviour of s is correlated to the segment-level
events aggregated in node n. In this case a new node nnew for segment
#segment(s) is appended to the cascade such that event counter = 1 and
#heat(nnew) = #start(s). An edge is added from n to nnew symbolizing the
correlation between n and nnew.

If a segment-level event s is not correlated to a cascade, we assume that none
of the preceding events are correlated to this outlier. As stated above, the new
outlier event s then marks the start of a new cascade. We start a new cascade
by generating a new cascade graph with one node. In the same way as a new
node is added to an existing cascade, the first node of the new cascade has
#segment(s) as segment and event counter = 1 and #heat(n) = #start(s). If
the cascade still contains one node once it becomes inactive, we delete it and



6 A. Wimbauer et al.

B:C
event counter: 1

heat value: 2021-01-07T13:35:00

B:C
event counter: 1

heat value: 2021-01-07T13:35:00

C:D
event counter: 1

heat value: 2021-01-07T16:00:00

B:C
event counter: 2

heat value: 2021-01-07T15:20:00

C:D
event counter: 1

heat value: 2021-01-07T16:00:00

(a) Example cascade building process

B:C

C:D

A:B

(b) Cascades going from B:C to C:D and
from B:C to A:B were clustered together
and composited to a cascade pattern

Fig. 2: Example Cascade Mining

regard the corresponding outlier (or outliers) as standalone. Fig. 2a describes
the incremental cascade building process for our example. B:C is the first node
of the new cascade, because outlier B:C - c1 could not be added to an existing
cascade. Next comes outlier C:D - c2 which is correlated to node B:C because
they overlap in activity C and are temporally close. A new node C:D with
an edge from B:C to C:D is added to the cascade. The third outlier B:C - c3
is correlated to both existing nodes. Since there is already an active node for
segment B:C the outlier is added to this node by updating the event counter
and heat value.

4.3 Cascade Patterns

In the first two steps, we process the traces and the outliers within these traces
consecutively. Every time a specific time has passed, and a set of cascades could
be collected within this period, the last step is carried out. We then cluster
these cascades in an offline phase to search for patterns within the cascades,
i.e., patterns of correlated segments. Alternatively, one of the various online
clustering algorithms (see [15]) could be applied to every error cascade that is
no longer active. This however is not in the scope of this paper.

We first cluster the cascade set by applying DBSCAN [4]. We chose the DB-
SCAN clustering algorithm [4], because it can find clusters of arbitrary shapes
and can handle noise. The clustering provides a grouping into similar cascade
graphs and filters out noisy or rare cascades simultaneously. To apply the algo-
rithm, we define a distance measure within the cascade space. For the distance
between two cascade graph we use the maximum common subgraph metric as
presented in [1]. To get more representative clustering results, we assign an ad-
ditional weight to every cascade. If a cascade weights 2, the clustering algorithm
handles the cascade as if it was contained in the set twice. As weights, we choose
the average number of segment-level event outliers that nodes in this cascade
contain. Adding weights is necessary because there might be cascades that stay
active for a long time. If correlated outliers come in at frequent intervals, we
always add them to the same cascade. This continuously prolongs the cascades
activity, and no new cascades with the same cascade pattern are generated.



PErrCas: Process Error Cascade Mining in Trace Streams 7

Activity_I

Activity_J
Activity_K

Activity_L

Activity_F

Activity_G

Activity_E Activity_H

Activity_M Activity_N Activity_P

Activity_Q

Activity_O
End

Activity_DActivity_B

Activity_C

Activity_A
Start

Fig. 3: Underlying process model for the synthetic data

Without adding any weights, DBSCAN would declare these cascade graphs as
noise, even though they represent many segment-level event outliers.

Finally, we compose all cascade graphs within a cluster into one cascade
pattern. Composing the cascades means we summarize all nodes and edges from
the individual graphs in one graph, the cascade pattern. The cascade pattern
provides a good overview of the various cascades in the respective cluster.

Clustering and composing the cascades aims at generating a relatively small,
manageable and easy to interpret result set. Different cascade patterns represent
distinct groups of outlier correlations. The compression is a significant advantage
compared to [12], where the number of resulting frequent cascades tends to be
very large, and there are often large groups of very similar frequent cascades.

Getting back to our example, let us assume that we retrieved a few more cas-
cades from B:C to C:D. Additionally, cascades from B:C to A:B were detected.
These cascades were grouped into the same cluster by the clustering algorithm,
and we compose these cascades into the cascade pattern shown in Fig. 2b. This
cascade pattern visualizes in an intuitive way that delays in segment B:C were
correlated to delays in both segment C:D and A:B. The final cascade pattern
then forms a good basis for possible process improvements.

5 Evaluation

5.1 Synthetic Data

In the following we present our results from testing our method on synthetic and
real life data. We first tested our approach on synthetic data, as this way, we
could verify the results we obtained from our method. For DBSCAN clustering
we use the following parmeters: ε = 0.4 and minPts is set to the 75%-quantile of
the cascade weights, but at least 4. For the synthetic data we used the processes
and logs generator PLG2 [2] to generate an eventlog, based on the process model
shown in Fig. 3. We then spread all traces over one year and introduced noise
by randomly delaying every event (normally distributed with µ = 30, σ2 = 25
minutes). Finally, we incorporated the three cascades shown in Fig. 4, by delaying
events in the corresponding segments. The cascades occur 300, 50 and 12 times
and have an approximate length of one day, one week and one month.

We tested our approach with different parameters, achieving the best results
with an activity threshold of 1 day and an outlier threshold of 5. During the



8 A. Wimbauer et al.

Activity_E:Activity_H X

Activity_H:Activity_J X
Activity_J:Activity_K

Activity_H:Activity_L

(a) Incorporated cascade 1

Activity_J:Activity_K Activity_H:Activity_J Activity_H:Activity_L Activity_E:Activity_H

(b) Detected Cascade Pattern 1

Activity_A:Activity_C Activity_C:Activity_B X

Activity_B:Activity_D

X Activity_D:Activity_F Activity_G:Activity_F

(c) Incorporated cascade 2

Activity_G:Activity_F Activity_D:Activity_F Activity_B:Activity_D Activity_C:Activity_B Activity_A:Activity_C

(d) Detected Cascade Pattern 2

Activity_P:Activity_O Activity_P:Activity_Q Activity_Q:Activity_P

(e) Incorporated cascade 3

Activity_P:Activity_QActivity_P:Activity_O

(f) Detected Cascade Pattern 3

Fig. 4: Induced and detected cascades in the synthetic log with
activity threshold = 1, outlier threshold = 5 and ε = 0.4

cascade detection phase 882 segment-level event outliers were detected and as-
signed to 167 cascades graphs. Out of these 167 graphs 121 were deleted before
clustering because they contained only one node. In the end we received 46 cas-
cade graphs, which were then grouped into 3 clusters (and some outliers) and
composited to the 3 cascade patterns shown in Fig. 4. This complies with the
number of cascades from the ground truth. Cascade 1 and 2 are nearly identi-
cal to the induced cascades and also have a maximum common subgraph (mcs)
similarity of 1.00 with the ground truth cascade. Cascade 3 is missing its last
segment node, which leads to a mcs similarity of 0.67.

To test our approach on datasets with different quality we increased noise
in our dataset. As described earlier we first generated an event log without any
noise (using PLG2) and induced the three cascades in a second step. To create
synthetic logs with increasing noise, we introduced noise to the control flow of
the initial event log using PLG2. To this end, we chose increasing parameters
(0 to 40 promille) for the trace missing head, trace missing tail, trace missing
episode, perturbed event order probability. We generated five logs for each noise
parameter and averaged the results over these five logs, since the results varied
due to randomness in the event log creation process.

The tested parameters and corresponding results are shown in Fig. 7. The F1-
score was calculated by comparing each detected cascade pattern with the ground
truth cascade it was most similar to. F1 nodes only considers correctly/wrong
assigned nodes, whereas the total F1-score considers nodes and edges. The overall
recall and the F1-score for nodes are significantly higher than the overall F1-
score, which is mainly due to additional edges in the detected cascade patterns
(Compared to the incorporated cascade patterns, the detected cascades contain
more undirected instead of directed edges.). These additional edges are detected
since the cascades were incorporated into the data in close intervals. Because of
this, a cascade might still be active when delays of a subsequent cascade start.
Fig. 7 shows that even though the quality of the results decreases slightly with
increasing noise, it still stays at a pretty high level and our approach can deliver
meaningful results.



PErrCas: Process Error Cascade Mining in Trace Streams 9

Permit FINAL_APPROVED by SUPERVISOR:Start trip

Permit APPROVED by ADMINISTRATION:Permit FINAL_APPROVED by SUPERVISOR

Permit APPROVED by ADMINISTRATION:Request For Payment SUBMITTED by EMPLOYEE

Permit APPROVED by ADMINISTRATION:Permit APPROVED by BUDGET OWNER

(a) cascade pattern 1

Permit SUBMITTED by EMPLOYEE:Permit APPROVED by ADMINISTRATION

Permit APPROVED by ADMINISTRATION:Permit REJECTED by BUDGET OWNER

Permit APPROVED by ADMINISTRATION:Permit FINAL_APPROVED by SUPERVISOR

Permit FINAL_APPROVED by SUPERVISOR:Declaration SUBMITTED by EMPLOYEE

Permit APPROVED by ADMINISTRATION:Send Reminder

Declaration SAVED by EMPLOYEE:Declaration SUBMITTED by EMPLOYEE

Declaration APPROVED by ADMINISTRATION:Declaration SUBMITTED by EMPLOYEE

(b) cascade pattern 2

Fig. 5: Exemplary cascade patterns retrieved from BPI 2020 dataset

To compare our results, we slightly adapted the method from [12] to our
use case and implemented it using python. We tested the approach on our syn-
thetic log with different parameters and achieved the best results (i.e. all cas-
cades were detected, with minimum result set size) with outlier threshold = 5,
time interval = 60 (batch length in days) and minimum support = 3 (for
frequent subgraph mining). The resultset consisted of 153 cascades, where each
cascade covered parts of the incorporated cascade patterns, and every cascade
pattern was represented entirely by at least one frequent subgraph. Even though
all incorporated cascade patterns were detected, the size of the result set was
considerable, making it very difficult to interpret it. Furthermore, many frequent
subgraphs differed from other subgraphs in only one node or edge and thus did
not contribute any new valuable information. We observed that the size of the
result set could vary significantly for different time intervals. At the same time,
it is challenging to choose an appropriate time interval because it cannot be
derived from the structure of the process. The size of the time interval defines
the maximum duration of a cascade. However, this information is not given in a
real-life cascade mining scenario, which means that by choosing a too small time
interval, one might neglect longer-lasting cascades. At the same time, a smaller
time interval might be desirable, as it leads to a smaller result set. Cascades of
cascade pattern 3 (see Fig. 4e) have an approximate length of 30 days. This cas-



10 A. Wimbauer et al.

31-12-17 23:00

28-02-18 23:00

30-04-18 23:00

30-06-18 23:00

31-08-18 23:00

31-10-18 23:00

31-12-18 23:00

Date

0

3

6

9

12

15

18

Nu
m

be
r o

f a
ct

iv
e 

ca
sc

ad
es

Fig. 6: Number of active cascades,
travel permit log of BPI 2020 dataset

0 5 10 15 20 25 30 35 40
Noise in promille

0.5

0.6

0.7

0.8

0.9

F1
Recall
Precision
F1 nodes

Fig. 7: Results on synthetic data with
increasing noise

cade pattern was only detected entirely from a time interval of 30 days onward.
For a bi-weekly interval, 3 of 106 frequent cascades had an mcs-similarity of 0.67
to cascade 3. For all the lower intervals, cascade 3 was not detected at all.

In conclusion, our approach yielded a far smaller result set (3 vs. 153 detected
cascade patterns) that still contained the same amount of information. At the
same time, we achieved good results even in a streaming scenario (compared to
an event log), where we had to process traces consecutively.

5.2 Travel Reimbursement Process

In addition to the synthetic data, we also tested our approach on real-world
process data that was published for the BPI Challenge 20201. The data was col-
lected from the travel reimbursement process at TU/e in 2017 and 2018 and con-
tained files for different subprocesses. Travel reimbursement is a process present
in nearly every company and thus forms a good basis for our evaluation. For
international trips, employees have to request a travel permit before starting
the trip. At the end of the trip, they can request reimbursement of their costs.
We chose this process for our tests because here, an array of delays can, in the
worst-case, risk the entire trip. For our experiments we used the travel permits
log, which contains the described process, and reduced it to traces in 2018.

With an activity threshold of 7 days and an outlier threshold of 5, we detected
12 cascade patterns, showing two examples in Fig. 5. 528 segment-level event
outliers were grouped into 124 cascades (+ 19 deleted cascades with one node).
As Fig. 6 shows, the number of active cascades changed in waves and decreased
over the year. A maximum number of 18 cascades was active at the beginning of
the year, which might be due to many requests regarding trips later in the year.

Fig. 8 shows how the results vary for different parameters. We observed that
with an increasing activity threshold, the number of detected cascade patterns
decreases while the average number of nodes per cascade pattern increases (Fig.

1 https://icpmconference.org/2020/bpi-challenge/
DOI: https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51



PErrCas: Process Error Cascade Mining in Trace Streams 11

0 20 40 60 80 100 120 140
Activity Thresholds

0

10

20

30

40

50

60

70

80 num. cascade patterns
avg. num. nodes/cascade pattern

(a) Results for different activity thresh-
olds with a constant minPts of 4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
MinPts

0

5

10

15

20

25

num. cascade patterns
avg. num. nodes/cascade pattern

(b) Results for different values of minPts
with a constant activity threshold of 7
days

Fig. 8: Parameter Sensibility (constant outlier threshold of 5)

8a). For a large activity threshold, e.g. 150 days, cascade nodes stay active for a
very long time. New incoming outliers are declared correlated to existing cascades
for a longer time, and no new cascades are started. This leads to larger cascades
and thus also larger cascade patterns. New cascades are started more frequently
for smaller activity thresholds, resulting in more cascades and fewer nodes per
cascade. At this point, it needs to be mentioned that an activity threshold of 150
days or even 60 days is probably very unrealistic for this kind of process. The
activity threshold resembles the time in which an anomaly can affect process
performance. A proper value for the activity threshold can be picked in the
context of the process structure, and in contrast to the time interval from [12]
no prior knowledge of the cascades is needed.

The number of cascade patterns also decreases with an increasing minPts
(input parameter DBSCAN)(Fig. 8b). The minPts parameter can be used as an
importance regulator. The higher it is, the fewer cascade patterns are detected
and the more cascades each pattern represents.

6 Conclusion

With our novel approach PErrCas, we are able to track correlated outliers over
multiple process instances by continuously adding outliers to existing cascades
and creating new cascades. We differentiate between two different correlations:
accumulations of outliers in one segment and correlated outliers in different seg-
ments. The set of cascades can be analyzed in regular intervals to create cascade
patterns and get an overall picture of the cascades. This continuous approach
avoids defining an observation window beforehand. Instead, we consider how
long an outlier can affect future process performance and track cascades as long
they influence process performance. A useful extension of our work would be to
discover a good candidate threshold for this automatically.

So far, our method only works on trace streams because we need entire traces
to build segment-level events and detect outliers. Future work could examine how



12 A. Wimbauer et al.

error cascades can be detected in event streams. Another issue for future work
is the correlation between outliers. We declare outliers to be correlated if they
are close in time and their segments overlap. However, there are also many other
ways in which two anomalies could be correlated.

References

1. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern recognition letters 19(3-4), 255–259 (1998)

2. Burattin, A.: Plg2: Multiperspective process randomization with online and offline
simulations. In: BPM (Demos). pp. 1–6. Citeseer (2016)

3. Denisov, V., Fahland, D., van der Aalst, W.M.: Unbiased, fine-grained description
of processes performance from event data. In: International Conference on Business
Process Management. pp. 139–157. Springer (2018)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm
for discovering clusters in large spatial databases with noise. In: kdd. vol. 96, pp.
226–231 (1996)

5. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey
of sequential pattern mining. Data Science and Pattern Recognition 1(1), 54–77
(2017)

6. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 33, pp. 922–929 (2019)

7. Laur, P., Symphor, J., Nock, R., Poncelet, P.: Mining sequential patterns on data
streams: A near-optimal statistical approach. In: Proc. of the 2nd International
Workshop on Knowledge Discovery from Data Streams (2005)

8. Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal
causal interactions in traffic data streams. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining. pp.
1010–1018 (2011)

9. Marascu, A., Masseglia, F.: Mining sequential patterns from temporal streaming
data. In: Proc. of the 1st ECML/PKDD Workshop on Mining Spatio-Temporal
Data (MSTD 2005). pp. 1–13. Citeseer (2005)

10. Richter, F., Maldonado, A., Zellner, L., Seidl, T.: Otoso: Online trace ordering for
structural overviews. In: International Conference on Process Mining. pp. 218–229.
Springer (2020)

11. Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.:
Intra and inter-case features in predictive process monitoring: A tale of two dimen-
sions. In: International Conference on Business Process Management. pp. 306–323.
Springer (2017)

12. Toosinezhad, Z., Fahland, D., Köroğlu, Ö., Van Der Aalst, W.M.: Detecting
system-level behavior leading to dynamic bottlenecks. In: 2020 2nd International
Conference on Process Mining (ICPM). pp. 17–24. IEEE (2020)

13. Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correla-
tion in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)

14. Xu, C., Chen, Y., Bie, R.: Sequential pattern mining in data streams using the
weighted sliding window model. In: 2009 15th International Conference on Parallel
and Distributed Systems. pp. 886–890. IEEE (2009)

15. Zubaroğlu, A., Atalay, V.: Data stream clustering: a review. Artificial Intelligence
Review 54(2), 1201–1236 (2021)


