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Abstract. Predicting the behaviour of consumers provides valuable in-
formation for retailers, such as the expected spend of a consumer or the
total turnover of the retailer. The ability to make predictions on an indi-
vidual level is useful, as it allows retailers to accurately perform targeted
marketing. However, with the expected large number of consumers and
their diverse behaviour, making accurate predictions on an individual
consumer level is difficult. In this paper we present a framework that
focuses on this trade-off in an online setting. By making predictions on
a larger number of consumers at a time, we improve the predictive accu-
racy but at the cost of usefulness, as we can say less about the individual
consumers. The framework is developed in an online setting, where we
update the prediction model and make new predictions over time. We
show the existence of the trade-off in an experimental evaluation on a
real-world dataset consisting of 39 weeks of transaction data.
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1 Introduction

Knowing the future behaviour of consumers is important to help retailers plan
ahead [3]. One way to do so is by predicting how consumers will behave on an

Fig. 1. Overview of the problem. Making predictions for individual consumers is more
useful, but less accurate. Making predictions for all consumers (i.e. the entire retailer) is
easier, but not useful on individual consumers. This paper balances the two by making
predictions using groups of consumers.
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individual level. Knowing which consumers are expected to increase or decrease
their spending allows retailers to apply more targeted marketing strategies. Un-
fortunately, the human nature of consumers makes it difficult to accurately pre-
dict on an individual level. Two consumers can behave similar for some time,
but then quite different in the next week. Another way to make predictions is
by taking all consumers together, for example by predicting the turnover of the
next week based on the turnover of the past weeks. This improves the accuracy
of the predictions as we effectively remove outliers from individual consumers,
but it also reduces the information we get about the individuals. This trade-off
is schematically presented in Figure 1.

In this paper we aim to strike a balance between accuracy and usefulness.
Instead of making predictions on individual consumers we make predictions on
groups of consumers. The advantage is an increase in accuracy with respect to
making predictions for individual consumers as we remove the effect of outliers
on the prediction. At the same time, we increase the usefulness of the prediction
with respect to the prediction on all consumers together. This is because the pre-
dictions are on a limited number of consumers at a time. We apply our framework
in a streaming setting, at regular intervals we discover clusters of consumers to
update the prediction model. We as such make the following contributions: 1)
we propose a framework to overcome the loss in prediction accuracy for diverse
consumers by making the predictions on carefully selected clusters of consumers
in a streaming environment, 2) we show its effectiveness on a real-world dataset
from the supermarket domain and 3) we show that over time, making predictions
on clusters does not decrease the accuracy of a downstream prediction task, in
contrast to making predictions on individual consumers.

The rest of this paper is organized as follows: we first present our framework
in Section 2 and evaluate it in Section 3. We then discuss how this paper relates
to existing work in Section 4. Finally, we conclude the paper in Section 5.

2 Framework

In this section we start by giving an overview of our framework, we present the
details and formalization of each step in the subsections. The data used can be
considered analogous to concepts in process mining: events are represented by
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Fig. 2. Overview of the framework
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transactions, cases by consumers, and timestamps by purchase dates. Multiple
events involving the same consumer constitute to (part of) the consumer journey.
These terms are interchangeable. For the description of the general framework
we stick to ‘events’ and ‘consumers’, but use ‘transactions’ in the application
details of this paper.

Like most other real-life applications, these journeys can vary wildly between
different consumers. The goal is to make a prediction about one or more future
events of a consumer. For our application this is the total spend over a given
period of time, the sum of the spend in the separate events.

The framework starts with this collection of events containing information
on a detailed level. This first step is to abstract from these single events. We do
so by aggregating events per week and per consumer. This results in a vector
of descriptive values that describes all visits of a consumer in a single week. We
refer to this as features. The details of this are discussed in Section 2.1.

The framework consists of a loop of roughly three steps as presented in
Algorithm 1 and schematically shown in Figure 2. At time t, we use the past
τ ∈ N+ weeks of data, [t − τ, t), to make a prediction about the next week
of data, [t, t + 1). We do not do so on an individual consumer basis, but on
a cluster of consumers. In other words, we learn the behaviour of a group of
consumers and make a prediction on their behaviour as a group. To this end
we first cluster the consumers based on the their features from [t − τ − 1, t)
into k ∈ N+ separate clusters. The details of this clustering are discussed in
Section 2.2. Next, we construct a training dataset to train a Recurrent Neural
Network (RNN) regression model. Each datapoint in this dataset represents one
cluster. The predictor space consists of the features in each week from [t − τ −
1, t − 1), averaged over the consumers in the cluster. The target value is the

Algorithm 1: Overview of the framework

input : Stream of events, in batches of one week at time t
output: Clusters gtj of consumers and predictions ŷtj for the average turnover

per consumer in gtj after every week t

1 while True do
2 Cluster consumers based on [t− τ − 1, t)
3 Extract descriptive features for consumers B Section 2.1
4 Create clusters of consumers B Section 2.2
5 Update LSTM
6 One sequence per cluster over [t− τ − 1, t− 1) as predictor
7 Turnover per cluster for [t− 1, t) as target
8 B Section 2.3
9 Make predictions

10 One Sequence per cluster over [t− τ, t) as predictor
11 Predict turnover per cluster for [t, t+ 1)
12 B Section 2.4
13 t← t+ 1
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Table 1. Values derived from a single transaction.

Index Value Description

v1 Freshness Fraction of perishable items
v2 Item value Average value of the items bought
v3 Product density Average frequency of each product
v4 Total value Total price paid for the transaction
v5 Total item count Total number of items purchased

turnover in [t − 1, t), averaged over all consumers in the cluster. The details of
this training and the RNN architecture are described in Section 2.3. Finally, we
make a prediction for every cluster using data [t − τ, t), predicting the average
consumer spend of a cluster for [t, t+ 1). The details of the prediction part are
discussed in Section 2.4.

2.1 Features

Our framework starts with a set of events L. Each such an event e has a
timestamp e.time, a unique consumer identifier e.cid ∈ C, a label e.label in
some activity space A, and additional values e.v1 through e.vm that contain
further information on the event. The first step in our framework consists of
summarizing multiple of these events over a period of time. For a time period
[t1, t2) and a consumer identified by c, we combine all events e that satisfy
the predicate t1 ≤ e.time < t2 ∧ e.cid = c, we indicate this set of events
as L′. Over these events we compute the fraction of each label a ∈ A as
freq(a) = |{e ∈ L′|e.label = a}|/|L′|

For the additional values e.v1 through e.vm we define functions h1 through
hm, with hi : P(L)→ R, which aggregates the values e.vi in L′. We also record
the number of events |L′|. In total, we therefore have |A| + m + 1 descriptions
that together summarize the events in L′. We refer to these as features in the
remainder of the paper, and indicate them as F = f1, f2, . . . , f|F |, where |F | =
|A|+m+ 1.

For the purpose of this paper, each event is a transaction made by a consumer
at a retailer. The consumer identifier e.cid is shared between transactions of
the same consumer, which is known because consumers hold loyalty cards that
uniquely identify them at each purchase. The timestamp e.time is the date (and
time) of the transaction. The label e.label provides a description of the contents
of the purchase. This labelling is based on an extension from earlier work [12].
It roughly consists of learning eight separate clusters over a large collection
of transactions, based on the categories and quantities of the products in a
transaction. Finally, the values e.v1 through e.v5 provide additional aggregate
information on the transaction, as indicated by Table 1.

We therefore have |A| = 8 (labels), m = 5 (values in Table 1), and as such a
total of |F | = 14 features that describe the events over a period of time. With the
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help of domain knowledge1, we define h1 through h3 as the mean, and h4 and h5
as the sum of the values of the individual events. The latter two, aggregating the
Total value and Total item count, are summed instead of averaged, as this
helps distinguishing consumers with a large total spend from consumers with a
smaller total spend.

The way in which our framework is constructed allows it to be generalized
for the use in certain business processes as well. The event logs of such processes
consist of labelled events that belong to a case with some case identifier, and
possibly contain additional values per event [1]. This more generic application is
beyond the scope of this paper.

2.2 Clustering

In the clustering step, we group consumers with similar behaviour over [t− τ −
1, t), conform the left box of Figure 2. We apply the aggregation of Section 2.1
to each separate week [t− τ − 1, t− τ), [t− τ, t− τ + 1), . . . , [t− 1, t). As such,
each consumer is described by |F | features at τ + 1 points in time, over the
period [t − τ − 1, t). While we learn how these values evolve over time during
training, we still want consumers with similar evolution to be grouped together.
For each feature fi we extract a linear fit over the values of fi in those weeks as
fi(t
′) = ai · t′ + bi with residuals ri. Consumers with similar ai, bi, and ri will

have a similar average value for f (bi), a similar increase/decrease (ai), and a
similar fitness to a linear trend (ri). We compute these ai, bi, and ri for each
feature fi, and cluster based on the resulting 3 · |F | coefficients.

As consumers can have different points in time where they first visit the store,
some may not have started their visits in or before the first week of the clustering
period. We exclude those consumers who have their first purchase after t− τ in
the clustering step, i.e. they are not assigned a cluster and clusters are not based
on these consumers.

For the clustering we apply a Lloyd’s algorithm [10] with the Euclidean dis-
tance, to find a given number of k clusters. In our studies, we evaluate a dataset
of tens of thousands of consumers at every clustering step. As such, we apply
an approximation to the Euclidean distance. Instead of taking the real space for
each dimension, we divide each dimension in a discrete number of bins. This
effectively reduces the number of actual datapoints, since some consumers may
be in the same bin in every dimension. This also allows a more efficient calcu-
lation of the Euclidean distance2. After the clustering step at time t we have a
clustering Gt = {gt1, gt2, . . . , gtk}, with gti ⊆ C and gtj ∩ gti = ∅ for i 6= j.

1 The authors gratefully thank the company BrandLoyalty for making their data avail-
able for this project and their useful feedback on the framework.

2 More details on this approximation can be found at github.com/YorickSpenrath/
ICPM2021/blob/main/BitBooster.pdf

github.com/YorickSpenrath/ICPM2021/blob/main/BitBooster.pdf
github.com/YorickSpenrath/ICPM2021/blob/main/BitBooster.pdf
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2.3 Training

In the training step we extract features and ground truth from the same time
frame we use in the clustering. We use the period [t − τ − 1, t − 1) for the
predictor values, and [t − 1, t) for the value of the total turnover that is to
be predicted, depicted in the centre box of Figure 2. For the purpose of our
framework, we require any model that uses these sequences of data to make
predictions. For the scope of this paper we use a long-short term memory RNN
(LSTM) as it learns from sequential data and has the advantage of allowing
incremental training. Each training point is a matrix where each row is one
element of the sequence, and each column is one feature. More specifically, for
a cluster gti ∈ Gt we compute a matrix M t

i such that M t
i [a, b] is the value of

feature fb over [t− τ − 2 + a, t− τ − 1 + a), averaged over all consumers in gti .
For the LSTM architecture we use the one defined by [14], staying as close

to that work as possible, only changing the input and output layers to match
our input and output representations. In an online trainig setting, we train the
model from scratch in the first time step, and update it at every next time step.

2.4 Predicting

During the predicting we construct the predictor values in the same way as
discussed in Section 2.3, using the clusters found in Section 2.2. In other words,
during a time step we use the same clusters to construct training and testing
points. We use [t− τ, t) to construct the sequence, i.e. we shift predictor period
by 1 week, as depicted in the right box of Figure 2. We use these predictor
sequences to predict the average turnover of a consumer in the cluster over the
week [t, t+1), indicated as ŷtj for cluster gtj . This results in k predictions, one for
each cluster. From this we can compute the total expected turnover by summing
the products of the cluster sizes and cluster predictions. We define this value as
T̂ =

∑k
j=1 |gtj | · ŷtj .

3 Experimental Evaluation

In this section we discuss the experimental evaluation of the method described
in Section 2. For the experiment, we use data from a real-life retailer. Because of
privacy restrictions, we cannot disclose all details. The transaction data comes
from 39 weeks and contains over 160000 consumers with at least one purchase
in that time. The number of visits per consumer varies between 1 and 312 with
a mean of 55.0 and a standard deviation of 21.8. We discuss the experimental
setup in Section 3.1 and then present and discuss the results in Section 3.2.

3.1 Experimental Setup

For the experiments we vary the two parameters of our framework: the sequence
length τ and the number of clusters k. For τ we take 2, 4, 6, 8, 10. For k we take
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values 250, 500, 750, 1000 and 2000η for η = 1 . . . 5. We also add two special
cases. The first has k = 1: all consumers belong to the same cluster. The second
does not use clusters, i.e. every consumer has its own cluster. This is indicated
by k = |C|. These latter two can be regarded as competitors: existing solutions
that do not use clustering to improve predictions. In total, we conduct 5 ·11 = 55
experiments.

Each prediction estimates the average turnover per consumer in each clus-
ter. The ground truth of this is the actual average turnover per consumer in
the cluster. Based on this, we define three metrics to asses the quality of each
parameter combination at each time step. The first is the root mean square
error (RMSE) on the cluster predictions. This is a measure of the prediction
accuracy. We further identify the 10% of the consumers that have the largest
decrease in their turnover with respect to the previous week. Formally, we label
each consumer with True if their decrease in turnover is among the 10% highest
of all consumers (top decile), and False otherwise. We can do this using the
actual turnover (as true label) and using the predicted turnover of the cluster
they belong to (as predicted label). Using this classification, we then compute
the F1 score at each time step as a second quality metric. Finally, we compute
the predicted total turnover using T̂ from Section 2.4 and compare this with
the actual total turnover. We compute the absolute percentage error (APE),
100% · |T − T̂ |/T , as a third metric. The latter two metrics are measures of
usefulness.

Our aim is to answer the following questions. 1) How does τ influence the
RMSE (prediction accuracy)? 2) How does k influence the RMSE (prediction
accuracy)? 3) How does k influence the F1 on the top decile (usefulness)? 4)
How does k influence the APE in T̂ (usefulness)? 5) How does k influence the
F1 over time (usefulness)? 6) What are the considerations for a ‘good’ value for
k (balance)? For the first four questions we average all of the above metrics over
time; starting at t = 11. This is because if τ = 10, the first prediction made is
at t = 11. In this way, we average the same number prediction metrics for every
experiment. The implementation of the framework is open-source and can be
found at www.github.com/YorickSpenrath/ICPM2021.

3.2 Results

In this section we present and discuss the experimental results. Each combination
of k and τ delivers one value for RMSE, F1 and APE, averaged over time. The
results are presented in Figure 3. Each row contains the results for one value of
τ , increasing k from left to right, each column contains the results for one value
of k, increasing τ from top to bottom.

The effect of τ on RMSE (prediction accuracy) We first analyze the
effects of τ on the RMSE in Figure 3A as this will be relevant in the discussions
on k. We distinguish between values k ≤ 1000 and k > 1000.

k > 1000 For larger k, all experiments show a clear decrease of RMSE with
increasing τ . This is expected, as a higher τ means that the data sequences for

www.github.com/YorickSpenrath/ICPM2021
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6
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2
4
6
8
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41±18
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26±12
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.67±.01
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.67±.01

16±3
43±3
12±3
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25±5
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24±6
19±2
22±5
28±7

.67±.01

.67±.01

.67±.01

.67±.01

.66±.01

28±3
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16±3
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27±7

.67±.01

.69±.01

.67±.01

.68±.01

.68±.01

17±3
22±3
12±3
22±4
17±5

46±4
37±5
32±4
33±4
31±5

.65±.01

.69±.01

.68±.01

.68±.01

.68±.01

7±3
27±3
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23±3
20±5

49±3
40±4
37±4
35±4
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.69±.01

.68±.01

.69±.01

.69±.01

7±2
22±3
19±3
25±3
23±5

52±3
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.69±.01

.69±.01
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54±3
44±3
41±3
39±3
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.69±.01

.69±.01

.69±.01

.69±.01

10±2
22±3
29±3
31±3
32±4

51±2
47±2
43±2
41±2
43±2

.56±.01

.51±.01

.49±.02

.49±.02

.51±.03

47±2
37±2
36±2
38±3
42±4

(A) Cluster RMSE

(B) F1 on top decile

(C) T absolute percentage error

Fig. 3. Results for the experiments. Lighter colours indicate a better value, the colour
scale is with respect to the values in each separate table. The RMSE is in monetary
units, the APE are percentages.

each cluster are longer and the LSTM can learn from a longer period of time,
which benefits its performance [18].

k ≤ 1000 For smaller k, the RMSE is not as consistently decreasing with
increasing τ . The reason for this is that for a lower value of k we have fewer
clusters of consumers and hence fewer training points. This makes the model
possibly less stable, as it has less data to improve its performance. As a result,
some models may fail to perform as expected. This means that longer sequences
(higher τ) may result in poorer predictions than shorter sequences (lower τ).

The effect of k on RMSE (prediction accuracy) We next analyze the
influence of k (left to right) on the RMSE. With the exception of k = 1, from
Figure 3A we clearly see that the RMSE increases (worse predictions) with
k. This is to be expected, as an increase in the number of clusters means that
each cluster is smaller in size. As a result of this, the values in the clusters
that are used to construct the sequences fed to the LSTM are based on fewer
consumers. This increases the effect of outliers on the mean feature value and
hence decreases the quality of the sequences on which the LSTM is trained. With
the exception of τ ∈ [6, 8], k = 1 follows a similar trend, outperforming all other
values of k. The exception for τ ∈ [6, 8] is likely caused by the above-mentioned
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instability: the model is only updated with a single value every training step.
This may still result in a decent model (as evident from other τ values) though
there is no guarantee. While the RMSE for the other τ values is consistently
lower than those for other k, we do note that k = 1 makes a single predictions
for all consumers together. This means that little to nothing can be said about
the individual consumers making it less useful than many clusters, where the
predictions are on fewer consumers at a time.

The effect of k on F1 (usefulness) Figure 3B clearly shows the inverse
effect of Figure 3A in terms of k. An increase in k shows a clear increase in the
F1, making the resulting models more useful. There does seem to be a limit to
this though, once we make predictions on individual consumers (k = |C|), the
F1 decreases again. We expect the cause of this to be the further increase in
RMSE for this value, though future research should look into this.

The effect of k on APE (usefulness) As depicted in Figure 3C, the relation
between k and APE is less obvious than for the other two metrics. For lower
values of τ , a higher value of k is preferred. For mid range values of τ , lower values
of k perform better. For higher values of τ , the mid range of k shows a better
performance. It is difficult to find the exact reason for this. One explanation is
that each cluster prediction can either be too high (over-predicting) or too low
(under-predicting). Summing all these predictions to compute the total turnover
then effectively self-corrects these errors. There are then two factors affecting
the total turnover error: the RMSE of the individual predictions and the self-
correction effect. As discussed, the former increases with k. It is reasonable that
the latter effect is more present for higher k. The question is which of these
effects is stronger. As discussed before, the RMSE decreases with τ . As such,
for lower τ , the stronger self-correction effect for higher k is more important
to get a decent total turnover prediction. For higher values of τ , the reduced
RMSE appears to allow lower values of k (with k > 1000) to be preferred. For
the mid-range of τ values, it is not exactly clear why even lower k values are
better, though this can be caused by the same model instability effect discussed
before.

The effect of k on F1 over time (usefulness) The results above have
shown the effect of k on prediction accuracy and usefulness as average over all
time steps. We now discuss some of the effects that can be viewed as the model
progresses over time, presented in Figure 4. The numbers in the bottom row of
Figure 3B are the averages of these plots. From the figure we clearly see the
importance of making predictions in groups of consumers. The F1 for making
individual predictions (k = |C|) quickly diminishes over time, stabilizing up to
0.25 points lower than the other experiments. Next to this, we see the effect of
external events at three points in time, indicated by vertical dotted lines. These
external events are likely to cause a sudden change in the consumer behaviour,
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decreasing the predictive accuracy in the time around them. This results in a
sudden drop in F1, especially for the first and third event.

The optimal value of k Based on the above results there are three consider-
ations for the optimal value of k: Model stability (lower k means fewer training
points), Cluster stability (lower k means better averaged clusters), and Cluster
detail (higher k makes predictions closer to individual consumers).

4 Related Work

One class of supervised learning is called ‘bucketing’. In bucketing, datapoints
from a training set are first clustered using some clustering method, and a sep-
arate machine learning model is trained on each cluster. This approach is also
extensively used in predictive process mining. Examples of such works are [5]
(offline) and [6] (online). Our approach is different in the sense that we do not
train one model per cluster, but train and update a single model using datapoints
that are each extracted from a single cluster. While having a different target,
the work in [4] applies clustering for the same reason as we do. The aim of that
work is to discover process models that describe the sequences in an event log.
A difficulty in discovering such process models is the variability in sequences.
As a solution, the authors iteratively split the collection of sequences to create
smaller event logs to create better models. The splitting is based on clustering
to combine comparable sequences, much like our approach.

In Section 2.1 we described how we summarize a sequence of events over a
period of time into a feature vector. This process is referred to as encoding or
embedding. In the process mining field, different techniques of encoding exist. The
most frequently used method to limit the number of events considered (prefix) to
create evenly-sized vectors. These vectors then either list only the labels (e.label),
or also each of the attributes (e.v1 - e.vm). Examples of the use of this encoding

10 15 20 25 30 35
t

0.4

0.5

0.6

0.7

0.8
F1 on top decile over time ( = 10)

1 500 1000 4000 8000 | |

Fig. 4. Progression of F1 over time for τ = 10. The vertical lines indicate significant
external influences that can influence consumer behaviour.
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are [5,6,9]. The disadvantage of this approach in our use case is that the number
of events in a given time frame is highly relevant, limiting to a fixed-number
of first events would lose this information. The frequency-based encoding we
apply is also used in for example [11]. [9] further uses Hidden Markov Models
(HMMs): a value of likeliness that a sequence belongs to the target class based
on initially learned HMMs is added to the feature space. A more dedicated
approach is to find relevant subsequences and count their frequencies, such as in
[2,4]. While this can be highly relevant as an addition to our current encoding,
it is computationally expensive to find which subsequences are relevant.

In terms of predictive process mining, this paper is part of a class of out-
come prediction solutions. [14] adopts LSTMs to predict the remainder (suffix)
of a case by repeated next activity predictions. The same target is predicted in
[15] but then with the use of deep adversarial models. In [9], the authors pre-
dict whether an active case will be compliant or not according to the business
process owner, leveraging complex encoding case as explained above. The same
prediction task is executed by [5], which makes use of the bucketing described
above. Using techniques from text mining, [16] aims to early signal whether a
case will have a outcome that requires intervention using unstructured textual
information from events. A more detailed summary of recent outcome-oriented
tasks can be found in [17]. Next to this, literature contains specific to consumer
behaviour prediction. Examples of these include the next interaction [8], losing
a consumer (churning) [3,7,13], and life-time value [3]. Of these, [8] also uses a
process mining oriented approach, and [13] also uses Neural Networks for their
predictions. The work of [3] further suggests the use of automatically learned
features over handcrafted ones for the prediction.

5 Conclusion and Future Work

In this paper we proposed a framework to make predictions about future events
of consumer behaviour, aiming to strike a balance between accuracy and useful-
ness. Larger clusters lead to better predictions but say less about the individual
consumers, and vice-verse for smaller clusters. Apart from this, a lower number
of clusters likely causes the prediction model to be less stable as fewer training
points are available. We also demonstrated the benefit of clustering consumers
over time. When making predictions on an individual consumers, the usefulness
(F1) rapidly decreases over time, this effect is not seen when consumers are
grouped together for the prediction.

For future research, several directions can be identified. The most important
one is how the size of the dataset affects the considerations for the optimal num-
ber of clusters. Another direction is to replace the linear fit clustering method.
The framework operates on events that belong to consumers, and as such existing
clustering methods from the process mining field, such as [2,9], are alternatives
to this. Finally, at each time step the clusters are recomputed. An extension lies
in incorporating past information on clusters, such that longer-term similarities
in consumer behaviour can also be considered.
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7. Günesen, S.N., Şen, N., Yıldırım, N., Kaya, T.: Customer Churn Prediction in
FMCG Sector Using Machine Learning Applications. In: Artificial Intelligence for
Knowledge Management. pp. 82–103 (2021)

8. Hassani, M., Habets, S.: Predicting next touch point in a customer journey: A use
case in telecommunication. Proceedings ECMS 35(1), 48–54 (2021)

9. Leontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M.: Com-
plex Symbolic Sequence Encodings for Predictive Monitoring of Business Processes.
LNCS 9253, 297–313 (2016)

10. Lloyd, S.P.: Least Squares Quantization in PCM. IEEE Transactions on Informa-
tion Theory 28(2), 129–137 (1982)

11. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process
Mining. In: Lecture Notes in Business Information Processing. vol. 17, pp. 109–
120 (2009)

12. Spenrath, Y., Hassani, M., van Dongen, B.F., Tariq, H.: Why did my Consumer
Shop? Learning an Efficient Distance Metric for Retailer Transaction Data. In:
Proceedings of ECML PKDD 2020 LNCS Springer (2020)

13. Tariq, M.U., Babar, M., Poulin, M., Khattak, A.S.: Distributed model for cus-
tomer churn prediction using convolutional neural network. Journal of Modelling
in Management (2021)

14. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive Business Process Moni-
toring with LSTM Neural Networks. In: Advanced Information Systems Engineer-
ing. pp. 477–492. Springer International Publishing, Cham (2017)

15. Taymouri, F., La Rosa, M., Erfani, S.M.: A Deep Adversarial Model for Suffix and
Remaining Time Prediction of Event Sequences. Proc. SDM pp. 522–530 (2021)

16. Teinemaa, I., Dumas, M., Maggi, F.M., Francescomarino, C.D.: Predictive Business
Process Monitoring with Structured and Unstructured Data. LNCS 9850, 401–417
(2016)

17. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-Oriented Predictive
Process Monitoring: Review and Benchmark. ACM Trans. Knowl. Discov. Data
13(2), 1–57 (2019)

18. Wen, Y., Zhang, W., Luo, R., Wang, J.: Learning text representation using re-
current convolutional neural network with highway layers. In: Neu-IR workshop
preceedings, SIGIR’16 (2016)

www.arxiv.org/abs/1804.03967

	Online Prediction of Aggregated Retailer Consumer Behaviour

