Task-Free Continual Learning with Dynamic
Loss for Online Next Activity Prediction

Tamara Verbeek, Ruozhu Yao, and Marwan Hassani

Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.m.verbeek@student.tue.nl r.yao@student.tue.nl m.hassani@tue.nl

Abstract. Continual learning, known also as lifelong learning, aims
at designing learning models that can continuously and autonomously
adapt to varying data concepts without forgetting previously collected
knowledge. Such concepts are referred to as tasks. Predictive business
process monitoring, which predicts future process steps, is crucial in dy-
namic environments where tasks are not previously specified and pro-
cesses frequently change or face unpredictability. However, many exist-
ing frameworks assume a static setting, ignoring dynamic nature and
concept drifts in processes, leading to catastrophic forgetting—where
training over new data adversely affects the performance on previously
learned tasks. This paper presents TFCLPM, a framework for online next
activity prediction that operates without relying on predefined tasks and
employs continual learning techniques to reduce catastrophic forgetting.
The methodology combines a Single Dense Layer neural network with
a continual learning algorithm designed to retain challenging historical
samples and include a regularizer to stabilize model parameters. Exten-
sive experimental evaluations with synthetic and real-world event logs
highlight our optimal configurations. The proposed framework’s perfor-
mance is compared against three existing online next activity prediction
methodologies. Results show significant improvements in prediction accu-
racy, especially in scenarios with gradual or recurrent drifts, highlighting
the framework’s robustness and efficiency, even with large datasets.

Keywords: Next-Activity Prediction, Concept Drift, Catastrophic Forgetting,
Continual Learning, Task-free Learning, Dynamic Loss Function

1 Introduction

Process mining involves analyzing event logs from business processes to discover,
monitor, and improve real processes by extracting valuable insights and patterns.
It bridges the gap between data and process management, enabling organizations
to visualize, understand, and optimize their operational workflows [17]. A recent
focus on predictive process monitoring underscores its vital significance, as it
allows organizations to dynamically predict the future paths of individual pro-
cess instances [5]. The ability to predict the next activity in predictive process
monitoring is crucial for foreseeing and preparing for future actions in business
processes. By leveraging this predictive power, organizations can manage re-
sources such as manpower, materials, and time proactively, ensuring they are
utilized effectively to address upcoming needs.

https://orcid.org/0000-0002-4027-4351

2 T. Verbeek, R. Yao and M. Hassani

Traditionally, machine learning models are trained with separate training
and test sets, assuming all data is available upfront. However, in real-world
business scenarios, next activity prediction is more effective in an online setting,
where the model continuously learns from incoming data. This allows the model
to stay current with the latest information and adapt to changes in the data,
known as concept drifts [20], which occur when the statistical properties of the
target variable change over time. By continually integrating new data, the model
maintains accuracy and relevance, effectively responding to dynamic business
environments.

Continual learning, or lifelong learning, is essential for improving online pre-
diction. It allows models to retain past knowledge while adapting to new data,
maintaining a deep understanding of evolving data. In dynamic real-world en-
vironments, predicting next activities accurately is crucial, as it ensures that
models remain effective and relevant amid changing patterns. This adaptability is
vital for maintaining efficiency, enhancing decision-making, and enabling proac-
tive responses in areas like business workflows, manufacturing, and customer
service, where timely predictions directly affect performance. Various strategies
for predicting future activities in an online context are discussed in [64[8}21].

In the context of this paper, a task is not conceptualized as a step in a
process, but as a learning task where a model must execute actions like next
activity prediction on a given data distribution. In dynamic environments with
continuously evolving data, traditional next activity prediction methods often
rely on predefined tasks or concept drift detection to trigger model updates.
However, these approaches have limitations, as defining tasks in advance or de-
tecting drifts can be impractical in real-world scenarios where changes are subtle
and unpredictable. A task-free approach to continual next activity prediction of-
fers significant advantages. It eliminates the need for explicit task definitions,
allowing the model to adapt seamlessly to shifting data distributions without
manual intervention. This flexibility is essential in environments where activities
are not clearly split into specific tasks or where drifts occur gradually.

Rather than waiting for concept drift detection, it is more effective to up-
date the model based on loss function behavior [3|. By monitoring for plateaus
followed by peaks, we can pinpoint when the model’s performance stabilizes and
then declines, indicating that an update is needed. This method ensures timely
updates, maintaining model accuracy while avoiding unnecessary updates that
could lead to overfitting or resource waste. Additionally, it is advantageous to
use a dynamic loss function that adapts based on the significance of the model’s
parameters [1] because it helps the model to selectively retain critical knowledge
while adapting to new information. By weighting the loss according to parameter
importance, the model can prioritize preserving crucial parameters that have a
significant impact on performance, thereby minimizing catastrophic forgetting.

The contributions of this paper include: i) introducing the first use of con-
tinual learning through a dynamic loss function for task-free online next activity
prediction; ii) conducting a comprehensive experimental evaluation using both

Online Continual Learning for Next Activity Prediction 3

synthetic and real-world datasets with various types of concept drifts; and, iii)
demonstrating that our approach outperforms existing methods.

The remainder of the paper is organized as follows: Section [2] reviews a re-
quired background and most related work, followed by preliminaries and prob-
lem formulation in Section [3] Section [details our main approach, TFCLPM
(Task-Free Continual Learning for predictive Process Mining). A extensive ex-
perimental evaluation is presented in Section [5] while a conclusion of this paper
is presented in Section [6]

2 Background and Memory Aware Synapses

Studies explore incremental techniques to update predictive models with new
process execution data. Pauwels et al. [13] compare various update strategies,
including re-training with and without hyperoptimization and incremental up-
dates, demonstrating the effectiveness of incremental updates in maintaining
model quality while offering real-time adaptability.

Continual learning aims to enable machine learning models to learn and adapt
continuously over time, much like how humans assimilate knowledge throughout
their lives. Within this framework, researchers have explored various methods,
each offering unique perspectives and strategies. These methods include memory-
based, architecture-based, regularization-based, and prompt-based approaches.

Memory-based approaches involve storing and retrieving past experiences
or knowledge. These approaches can be divided into two categories: the first re-
tains actual past experiences, as seen in methods like Experience Replay [15],
iCaRL [14], DynaTrainCDD |[8], Maximally Interfered Retrieval [2], and Gra-
dient Episodic Memory [11]. The second category generates past experiences
during training, exemplified by Generative Replay [|9]. Regularization-based
methods aim to prevent catastrophic forgetting by constraining weight updates
during training. This constraint can be achieved by determining the significance
of each parameter for past tasks, like in Elastic Weight Consolidation [7] or de-
termining how crucial each weight in the network is, such as Memory Aware
Synapses |1]. Alternatively, the importance of parameters can be assessed based
on their impact on output sensitivity, with selective penalties applied to key
parameters to mitigate forgetting, which is done in Learning without Forget-
ting [10]. Architecture-based approaches, in contrast, prioritize adjusting
the neural network’s structure to integrate new data while preserving existing
knowledge. One approach involves dynamic architectures, which expand the net-
work by adding more neurons or layers for each task. This allows the model to
continuously grow and adapt without forgetting previous knowledge, as exem-
plified by methods such as Progressive Neural Networks [16]. Prompt-based
approaches (e.g. DualPrompt [19]), a more recent addition to the continuum,
introduce a novel perspective on continual learning challenges. These methods
entail attaching static or adaptable “instructions”, also referred to as prompts,
to direct the model’s behavior. These prompts can take various forms, such as
specific input patterns, embeddings, or task-specific tokens which help the model
to recall and apply knowledge from earlier tasks.

4 T. Verbeek, R. Yao and M. Hassani

We further elaborate on Memory Aware Synapses (MAS) [1] as a memory-
based technique that our method, TFCLPM, builds on. First, it evaluates the
significance of each weight, also called parameter, in the network. Once the
network has been trained on a task, the importance of a parameter is assessed by
determining how changes to it could impact the network’s overall performance.
The importance §2;; of a particular parameter 6;; is calculated using Eq.

1 N
2 = 5 2 ool (1)

where IV represents the total number of data samples and g;;(xy) indicates
how the network’s output changes for a given input x; when 6;; is adjusted
(see Eq. . For networks with multiple outputs, a simplified approach is rec-
ommended. Instead of evaluating changes for each output separately, the overall
magnitude of the output change is measured with:

2 Tt
aian) = 220 ©)

where £3 is the squared I3 norm of the function output.

This approach reduces complexity by concentrating on the total change
rather than individual output variations. When the network is trained on a
new task, MAS prevents the forgetting of previously learned tasks by penalizing
significant changes to important parameters. The model’s objective is thus a
balance between performing well on the new task and preserving crucial param-
eters: Objective = Ln(f) + A x Penalty, where X is a regularization parameter
that controls the penalty for altering important parameters.

A modified version of MAS eliminates the need for explicit task definitions
by continuously learning from a data stream and adapting to evolving data
distributions [3|. The system identifies plateaus—moments when the network’s
performance stabilizes—Dby tracking the mean and variance of losses in a slid-
ing window (cf. Fig. . During these plateaus, the system saves snapshots of
the network’s weights to compare current and past data streams, updating the
importance weights of neurons to preserve knowledge while adapting to new
data.

Additionally a “hard buffer” with a small set of challenging samples retained
based on their high loss is introduced. This buffer helps evaluate neuron impor-
tance and contributes to creating a retraining dataset. Importance weights are
calculated using a cumulative moving average, preventing rapid fluctuations and
supporting stable learning. A regularization term is added to the loss function
to retain critical parameters, avoiding overfitting. Overall, the system enables
continual learning without predefined tasks, adapting to gradual data shifts and
supporting continuous model retraining and performance improvement.

Online Continual Learning for Next Activity Prediction 5

) peak peak
“| | \\. A

= £ 18
plateau plateau plateau plateau

Fig. 1: Distinct plateaus and peaks are shown in loss values, which signal when
to update the importance weights. X-axis represents update steps while y-axis
shows the loss values [3].

3 Preliminaries and Problem Formulation

In this section we delve into the problem of utilising continual learning in pro-
cess prediction. Assume we aim to develop an algorithm that continuously pro-
cesses an event stream S = {61,62,...} as events are generated, where e =
(¢,a,t,v1,...,u4). An event e is a tuple of case identifier ¢, activity label a,
timestamp ¢, and the values of the event attributes vy, ...,v4. A case refers to
a single instance of the process being analyzed or executed, encompassing all
events, attributes, and contextual information associated with that instance. A
case can include multiple traces, each representing different sequences of activ-
ities within the same instance. The stream S contains multiple traces. A trace
o = (eq;, ..., en;) denotes any finite sequence over the set of all events, related
to a case. Given o9, the prefix represents the sequence of activities executed
up to a certain point in a trace’s lifecycle. The prefix of length & is defined by

O‘SL = (€14, ..., €ki). On the other hand, a suffix refers to the part of a process

trace that occurs after a particular event or activity in that trace. Given o,
the suffix of events of length % is defined by 0>n & = (€(n—k)i» - €ni). For each
event e; that occurs in stream S, the general problem is that we want to predict
(@) (@)

the next activity happening in the suffix oy _, based on the prefix o_;.

Definition 1 (Next activity prediction). Let there be a sample of prefizes
of sequences P = {a(z) V=T where 2 < k < |0 ds the prefiz length and m is the

sample size. Given a prefix of an events sequence 0<k, the next activity predzctwn

is A(p+1); of the activity a(,11); happening in the beginning of the suffix O’>n -

Definition 2 (Online Next Activity Prediction). We aim to perform on-
going predictions of the next activity on a stream of events. Upon the arrival of
each new event ey;, we utilize the prefix 0<;€ to forecast the subsequent activity
a(k41)i- The stream S may encompass multiple learning tasks Ty that the pre-
diction model has to learn. We say that T, and T, where p # r represent two
different learning tasks if they belong to two different processes separated by a

concept drift, implying there is no relationship between these learning tasks.

6 T. Verbeek, R. Yao and M. Hassani

In the context of a stream of events involving multiple learning tasks, the
distribution evolves over time, necessitating continuous updates to the model.
In many scenarios, the model has to handle entirely new tasks that are distinct
from previously encountered ones. This necessitates task incremental learning.

Definition 3 (Task Incremental Learning). In task incremental learning,
two tasks n,m € [1,..,N| have no correspondence to each other if n # m.
Fach task possesses unique objectives and is associated with a separate process,
potentially necessitating the model to acquire new patterns, features, or behaviors.

If we want to update the model after a concept drift, we aim to use as
much data as possible. If a task reappears in a recurrent concept drift setup,
it is advantageous to have stored data about this task to ensure that it is not
forgotten. However, this poses challenges such as storage limitations or privacy
concerns. Those often prevent the model from keeping all past data, letting it
rely instead merely on recent data. This causes catastrophic forgetting [4].

Definition 4 (Catastrophic Forgetting). Let there be a prediction model at
any point in time that has learned a sequence of T --- T, learning tasks. When
faced with the T, 1th task, a typical model tends to forget how to predict the next
activities of the previously learned tasks.

This phenomenon poses a significant challenge in dynamic environments. To
address the issue of catastrophic forgetting, continual learning enables models to
retain and incorporate knowledge from previous tasks while learning new ones.

Definition 5 (Continual Learning). In continual learning, the model is de-
signed to mainly mitigate catastrophic forgetting while quickly adapting to emerg-
ing tasks. This is done by leveraging the past knowledge in the knowledge base to
help learn recurrent tasks. The objective is to optimize the performance of new
tasks while minimizing performance degradation of previously learned tasks.

Definition 6 (Continual Learning for Next Activity Prediction). Con-
sider a model that has learned to predict the next activities for an event stream
S. Throughout S, concept drifts may occur. These concept drifts refer to the al-
teration in the learning task. The event stream contains a sequence of T1---Tp
learning tasks, where each learning task represents an individual process. A learn-
ing task for next activity prediction is defined by pairs of prefizes and suffizes
of sequences P. Given a prefix of an event sequence U(gc, the learning task is to

deliver a prediction ax41 of the activity ar41 occurring in the suffix agkk such

that when presented with the Tn41th task, the model must accurately predict next
activities for this task without suffering from catastrophic forgetting if it was a
recurrent one. This necessitates maintaining the ability to predict the next activ-
ities for past prefixes while adapting to new patterns and variations in the event
sequences as new events e arrive from S.

Task-Free Continual Learning: In this work, we are designing the model
in such a way that tasks are neither previously specified, nor their starting and
ending timestamps are given. We refer to this by task-free continual learning.
This imposes further challenges to the designed model to detect the drift and to
also recognize the task while facing other continual learning challenges.

Online Continual Learning for Next Activity Prediction 7

4 Task-Free Continual Learning for predictive Process
Mining (TFCLPM)

We provide a comprehensive overview of the TFCLPM architecture, highlighting
its critical components. The implementation is available on GitHuHﬂ Fig.

shows the framework architecture for training the model.

Event stream

| |

Loss window
. Update model Peak

Loss function
MSELoss +4 ¥, Q.6 - 6;)*

[Hard samples]

T] S B e PR A Hihreshold

Update hard samples Update importance weights Importance weights T
_ - _ SL(x.0) 2
Liva = {L(5) | 5 € Specn; U Shard)} @ = o + (1~ @)Cpew Q=3 en(5) ‘ Plateau detection
Shara = {5 | L(s) = maxyep,,, L(x)} X
hard Sl (‘ o(loss_window) < Gipreshold

Fig.2: Framework of the Task-Free Continual Learning for predictive Process
Mining (TFCLPM).

Events from the event stream are stored in a window, which is a tempo-
rary storage for the most recent events. When 500 events accumulate, chosen
following the experiments in [8], a model update is initiated. The events from
the window are combined with hard samples to form the retraining dataset. At
initialization, the hard samples dataset is empty. This retraining dataset is then
fed into the Single Dense Layer (SDL) model, which undergoes several epochs to
assimilate the new information. During model updates, a dynamic loss function
is employed, combining the Mean Squared Error (MSE) loss with the Memory
Aware Synapses (MAS) regularizer term defined as in Eq.

MASregularizer = % Z Q’L(el - 9:()2 (3)

where 6; represents the current value of a model parameter and 6 is the value
of that parameter prior to the update. This regularizer applies the calculated
importance weights {2; to penalize significant changes in critical weights.

After each model update, the loss values for all samples in the retraining
dataset are computed. For each sample, we determine the loss by evaluating
L, (F(x;0),y), and then plotting the resulting values. Once the plot is generated,
we need to analyze it to identify whether it contains a peak or a plateau. This
involves examining the plot to detect regions where the loss value either reaches
a maximum (peak) or stabilizes (plateau). To detect if a peak occurred, the
condition p(loss window) > u' + o’ is checked, where p' and o’ represent the
mean and standard deviation of the previous window. Next, we calculate the

! https://github.com/TamaraVerbeek/TFCLPM

8 T. Verbeek, R. Yao and M. Hassani

variance of the losses from the retraining dataset. We then verify if the conditions
u(l_window) < pyp, and o (l_window) < oy, are met, where pp, and oy, represent
the predefined thresholds. This step is crucial for assessing whether the variance
and the mean of the loss values are within acceptable limits, which helps in
determining if the model requires an update based on stability criteria. If both
metrics fall below a predetermined threshold, the importance weights and hard
samples are updated accordingly.

Importance weights and hard samples update At initialization, the number of
hard samples, denoted as H, is configured as a hyperparameter. To manage the
hard samples effectively, we first calculate the importance of each sample in the
retraining dataset based on its loss value, which has been previously assessed to
determine the need for updates. Samples with higher loss values are deemed more
challenging and therefore more critical for model performance. Consequently, the
H samples with the highest losses are selected and designated as hard samples.
As the model undergoes updates, the importance weights are revised accord-
ingly. In parallel, the Memory Aware Synapses (MAS) regularizer is adjusted to
reflect these changes. The importance values used in the MAS regularizer are

updated using Eq.
Q2 =a2; + (1 —) 2new, (4)

where « is set to 0.5, indicating that the updated importance values are influ-
enced equally by both the previous and current values. This balanced approach
ensures that the regularizer effectively accounts for both historical and recent
data, facilitating more stable and accurate model updates. The new importance
values (2., are determined by the Eq.

5 Experimental Evaluation

FEvaluation Metrics To effectively measure the performance of our proposed ap-
proach, it is essential to have evaluation metrics that offer a nuanced under-
standing of our model’s performance dynamics.

Accuracy at a given event index is a performance metric used to assess
the effectiveness of a predictive model at a specific position within the sequence of
events. In mathematical terms, if we denote ~y as the size of the average accuracy
window, and ¢; as the predicted event at index j based on preceding events,
with y; representing the actual event at index j, the accuracy at index i can be
expressed as: accuracy; = % Z;zi_,y 1{9; = y;} (5). The formula computes the
ratio of correct predictions from j up to event index 4, averaging the predictions
in the window. Average accuracy is calculated by averaging across all events to
determine whether each one is predicted correctly. Running Time encapsulates
the total duration the approach requires to process the entire event stream.

The Datasets We provide an overview of the datasets utilized in our study

comprising a diverse selection of both real-world and synthetic datasets.
Synthetic Datasets: Business Process Drift The Business Process Drift

dataset is a synthetic compilation designed to serve as a benchmark for the study

Online Continual Learning for Next Activity Prediction 9

of business process changes. To simulate drift in a log, the authors of [12] system-
atically altered a base model by applying one of twelve simple change patterns,
resulting in a total of 5.0000 events per simulated log containing 17 unique
events. For more details on these simple change patterns, we refer interested
readers to [12].

Real-World Datasets The BPI Challenge 2020 dataset captures two years
of travel expense claims at a university, with 6.000 to 10.000 cases showing grad-
ual drift. It includes five subsets where only three are used in this research:
Domestic Declarations and Request for Payment average 5 events per case
while International Declarations has 11 on average. The BPI Challenge 2015
dataset merges building permit applications from five municipalities into one
event stream, with four sudden concept drifts, 5.600 cases, 181 unique events,
and an average of 37 events per case. The BPI Challenge 2017 dataset includes
5.168 loan application cases with 45 unique events and avg of 18 events/case.

The Competitors The performance of the model is compared with three com-
petitors. Among these competitors are two baseline methods. The Incremental
Update (w = 1) approach [13] involves updating the model every month to
incorporate the most recent data. In the Incremental Update (w = Last
Drift) approach [13], the model is updated after each window of data based on
the historical data up to the last observed concept drift. Next to this, a state-
of-the-art method is used as a competitor. The method DynaTrainCDD (8]
distinguishes itself through its advanced concept drift detection algorithm called
PrefixCDD [6]. It continually monitors process data for deviations and utilizes
Prefix Trees to represent and analyze process sequences efficiently. These de-
tected drifts dynamically dictate the frequency of updates and the selection of
datasets for retraining.

Parameter Selection The selection of parameters for our framework was driven
by a combination of empirical experimentation and theoretical considerations.
The primary goal was to optimize accuracy. After experimentation and analysis,
the number of hard samples is set to 100, the MAS weight is set to 0.5, and the
mean and variance thresholds for detecting a plateau are 0.2 and 0.1, respectively.

5.1 The Results

Tab. [1] displays the average accuracy across all methods and datasets. Notably,
TFCLPM achieves the highest average accuracy for the synthetic datasets. Dyna-
TrainCDD also shows strong performance, closely trailing TFCLPM. In contrast,
both Incremental Update (w = 1) and Incremental Update (w = Last Drift) lag
significantly behind TFCLPM and DynaTrainCDD. Since these datasets include
recurring concept drifts, this metric demonstrates that our approach is highly ef-
fective in reducing catastrophic forgetting. For the real-world datasets, TFCLPM
achieves the highest accuracy on the BPIC2020 datasets (DomesticDeclarations,
InternationalDeclarations, and RequestForPayment), but not on BPIC2017 or
BPIC2015. This indicates that TFCLPM maintains consistent performance in
datasets with gradual drift. Similar to the synthetic datasets, DynaTrainCDD
closely follows TFCLPM, while Incremental Update (w = 1) and Incremental

10 T. Verbeek, R. Yao and M. Hassani

[13] (w = Last Drift)[[13] (w = 1)[DynaTrainCDD [8][TFCLPM

TRO5000 75.35 75.33 79.61 80.43
ORI5000 75.73 74.21 80.8/ 81.88
RIO5000 75.02 75.08 80.15 81.06
ROI5000 75.66 73.87 81.27 82.85
OIR5000 68.23 68.88 75.78 77.36
InternationalDeclarations 82.00 80.79 82.30 82.83
DomesticDeclarations 83.72 84.00 87.93 88.69
RequestForPayment 83.73 83.74 85.33 87.65
BPI Challenge 2017 75.47 69.59 84.82 83.49
BPI Challenge 2015 74.75 75.25 69.16 74.01

Table 1: Average accuracy for all methods and datasets. Bold denotes the high-
est accuracy, italic the second highest, and underlined the third highest.

Update (w = Last Drift) lag significantly behind the other two methods. Ar-
guably, BPIC2017 lacks concept drifts, allowing us to evaluate if our approach
remains effective in their absence. In this case, our approach ranks second-best,
while DynaTrainCDD achieves the highest average accuracy. However, both of
these leading methods significantly outperform the other two approaches, high-
lighting their advantages. BPIC2015 is a challenging dataset due to its inclusion
of four distinct processes and many unique events, which poses difficulties for our
approach in handling these variations which shows in the lower average accuracy.

DomesticDeclarations

RequestForPayment

- start drift
—=- end drift
— TFCLPM
Incremental Update(w=1)
DynaTrainCDD
— Incremental Update(w=Last Drift)

- start drift
- end drift
TFOLPM
Incremental Update(w=1)
DynaTrainCOD
— Incremental Update(w=Last Drift)

15600 20000 25000 30000 35000
Event nde

o 10000 20000 30000 40000 50000 ventindex

Event Index

(c) Request for Payment

(a) Domestic Declarations
ROI5000

OIR5000

|
—— TFCLPM
Incremental Update(w=1)
—— DynaTrainCDD
—— Incremental Update(w=Last Drift)

—— TFCLPM
Incremental Update(w=1)

~—— DynaTrainCDD
—— Incremental Update(w=Last Drift) L
o 10000 20000 30000 40000 50000
20000 30000 40000 50000 Epoch or Time

Epoch or Time

(b) OIR5000 (d) ROI5000

Fig. 3: Accuracy at a given event index for four different datasets. Vertical dashed
lines represent a start (or an end) of a drift.

Fig. and Fig. [3d illustrate the advantages of avoiding reliance on concept
drift detection systems. It is evident that our approach restores accuracy much
more quickly compared to Incremental Update (w = 1), Incremental Update

Online Continual Learning for Next Activity Prediction 11

(w = Last Drift), and DynaTrainCDD. The competitors take longer to detect
concept drift, resulting in a slower return to an acceptable accuracy.
Fig.[3bland Fig.[3d|demonstrate the effectiveness of our approach on datasets
with recurrent concept drifts, highlighting the significance of the hard buffer
and importance weights. Our method consistently achieves high accuracy faster
than the others. In the OIR5000 dataset, when the drift occurs from the first
to the second concept, DynaTrainCDD, Incremental Update (w = 1), and In-
cremental Update (w = Last Drift) encounter difficulties, whereas our approach
swiftly recovers to around 75%. Although DynaTrainCDD gradually improves
and eventually matches TFCLPM'’s accuracy, our approach remains quicker to
recover after each drift. A similar trend is observed in the ROI5000 dataset, where
DynaTrainCDD lags slightly in regaining accuracy compared to our method’s
rapid recovery. Tab. 2] demonstrates the running time for all approaches. In-

[13] (w = Last Drift)|[13] (w = 1)|DynaTrainCDD [8||TFCLPM
TIOR5000 305.03 48.35 400.33 112.67
ORI5000 257.98 39.06 311.72 131.76
OIR5000 297.69 29.54 402.03 104.33
RIO5000 241.52 26.31 451.87 97.33
ROI5000 215.18 45.87 351.22 120.11
DomesticDeclarations 988.50 69.44 775.95 267.69
InternationalDeclarations 1801.68 87.95 953.96 377.53
RequestForPayment 517.30 50.76 530.05 118.11
BPI Challenge 2017 1605.53 361.68 3198.75 1226.71
BPI Challenge 2015 5893.64 2774.51 7194.67 8518.07

Table 2: Running times in Seconds for all methods and datasets.

cremental Update (w = 1) consistently performs efficiently across all scenarios
while Incremental Update (w = Last Drift) often has longer running times, par-
ticularly with sudden drifts, due to its reliance on the last drift for updates. Our
method offers stable and faster running times compared to DynaTrainCDD and
Incremental Update (w = Last Drift). This is because our method maintains a
constant retraining dataset size, ensuring a robust efficiency. On the other hand,
Incremental Update (w = Last Drift) uses a varying dataset size based on drift
detection, leading to longer running times in stable environments. Additionally,
DynaTrainCDD runs a concept drift detection algorithm in parallel that fur-
ther increases its running time. Our approach does not require an explicit drift
detection component, resulting in its consistently higher efficiency.

6 Conclusion

In this work, we proposed TFCLPM, a novel approach for continual next-activity
prediction aimed at mitigating catastrophic forgetting. This approach operates
without predefined tasks, allowing it to adapt flexibly to evolving data. It ad-
dresses catastrophic forgetting by maintaining a buffer of hard samples and
employing a dynamic loss function. We evaluated its performance using vari-
ous metrics, including average accuracy and accuracy at a given event index.
Through experiments on multiple synthetic and real-life datasets, we observed
that TFCLPM achieves the highest average accuracy on eight out of ten datasets.
It quickly recovers high accuracies after experiencing a concept drift and demon-
strates minimal forgetting in cases of recurrent drifts compared to other methods.

12

T. Verbeek, R. Yao and M. Hassani

Our method also shows stable running times compared to competitors. We plan
to explore further continual learning methods for possibly other downstream
prediction tasks, in a similar setup to [18] but for other prediction tasks.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV. pp. 139-154 (2018)
Aljundi, R., Caccia, L.: Online continual learning with maximally interfered re-
trieval. In: NIPS (2019)

Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In:
CVPR. pp. 11254-11263 (2019)

Chrysakis, A., Moens, M.F.: Online continual learning from imbalanced data. In:
ICML. pp. 1952-1961. PMLR (2020)

Ferilli, S., Angelastro, S.: Activity prediction in process mining using the WoMan
framework. JIIS 53, 93-112 (2019)

Huete, J., Qahtan, A.A., Hassani, M.: PrefixCDD: Effective online concept drift
detection over event streams using prefix trees. In: COMPSAC. pp. 328-333 (2023)
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., et al.: Overcoming catastrophic for-
getting in neural networks. CoRR abs/1612.00796 (2016)

Kosciuszek, T., Hassani, M.: Online next activity prediction under concept drifts.
In: CAISE Workshops. pp. 335-346 (2024)

Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A., Filliat, D.: Generative
models from the perspective of continual learning. In: IJCNN. pp. 1-8. IEEE (2019)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935-2947 (2017)

Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning.
Advances in neural information processing systems 30, 6470-6479 (2017)
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: BPM. pp. 406-422 (2015)

Pauwels, S., Calders, T.: Incremental predictive process monitoring: The next ac-
tivity case. In: BPM. pp. 123-140 (2021)

Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: Incremental classifier
and representation learning. In: CVPR. pp. 5533-5542 (2017)

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., Wayne, G.: Experience replay for
continual learning. Advances in Neural Information Processing Systems 32 (2019)
Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks. CoRR
abs/1606.04671 (2016), http://arxiv.org/abs/1606.04671

Van Der Aalst, W.: Process mining: Overview and opportunities. ACM Transac-
tions on Management Information Systems (TMIS) 3(2), 1-17 (2012)

Verbeek, T., Hassani, M.: Handling catastrophic forgetting: Online continual learn-
ing for next activity prediction. In: CooplS. p. to appear (2024)

Wang, Z., Zhang, Z., Ebrahimi, S., Sun, R., Zhang, H., Lee, C.Y., Ren, X., Su, G.,
Perot, V., Dy, J., et al.: DualPrompt: Complementary prompting for rehearsal-free
continual learning. In: ECCV. pp. 631-648 (2022)

Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine learning 23(1), 69101 (1996)

Wolters, L., Hassani, M.: Predicting activities of interest in the remainder of cus-
tomer journeys under online settings. In: ICPM Workshops. pp. 145-157 (2022)

http://arxiv.org/abs/1606.04671

	Task-Free Continual Learning with Dynamic Loss for Online Next Activity Prediction

