
Detect & Conquer: Template-Based Analysis of
Processes using Complex Event Processing

Christian Imenkamp1[0009−0007−4295−1268], Samira Akili2[0000−0002−9852−7489],
Matthias Weidlich2[0000−0003−3325−7227], and Agnes

Koschmider1[0000−0001−8206−7636]

1 Business Informatics and Process Analytics, University of Bayreuth, Germany
{christian.imenkamp|agnes.koschmider}@uni-bayreuth.de

https://www.pa.uni-bayreuth.de/en/
2 Department of Computer Science, Humboldt-Universität zu Berlin, Germany

{akilsami|matthias.weidlich}@hu-berlin.de

Abstract. Online process analysis aims at identifying behavioral regu-
larities or abnormalities in processes in near-real-time from continuous
event streams. Yet, its realization is challenging, due to the requirements
in terms of scalability and accuracy imposed by processes in Internet-of-
Things environments. Against this background, this paper presents an
approach for online process analysis that is based on standard models and
systems for complex event processing (CEP). We present the “Detect and
Conquer” approach that includes generic process templates to accurately
capture behavioral regularities or deviations, which are then mapped to
CEP queries to achieve their efficient evaluation. We evaluated our ap-
proach against synthetic and real-world datasets. The results demonstrate
the feasibility and efficiency of our approach.

Keywords: Process Querying · Complex Event Processing · Control-
Flow Patterns · Event Stream Processing

1 Introduction

With the rise of the Internet-of-Things (IoT), the volume of data that can
be exploited for process analysis has increased significantly. Specifically, IoT
environments include sensor-based systems that produce continuous streams of
data [11]. While such a setting provides unique opportunities for online process
analysis [9], it also imposes challenges in terms of accuracy, i.e., how to identify
behavioral regularities or abnormalities, and in terms of scalability, i.e., how to
scale the analysis to high-velocity data streams.

Most existing techniques for online process analysis are based on approaches
that have originally been developed for static data and subsequently been lifted
to online settings [17, 16]. However, these techniques are tailored for a specific
analysis task, and do not provide a generic mechanism that may be instantiated
for a wide range of analysis needs. In addition, their execution over streams of
data requires dedicated optimizations to achieve scalability, instead of employing
technical infrastructures for efficient stream processing.

https://www.pa.uni-bayreuth.de/en/

2 Imenkamp et al.

Fig. 1. Conceptual visualization of the “Detect and Conquer” approach.

In this paper, we outline the “Detect and Conquer” approach as a generic
mechanism for accurate and scalable online process analysis. In essence, our idea
is to facilitate accurate online process analysis through a collection of generic
process templates that capture behavioral dependencies that signal both, the
regular progress of process execution as well as abnormal behavior. Once these
templates have been instantiated for a specific process, they are translated into
queries for complex event processing (CEP). This way, standard models and
systems for CEP, which have been designed for high-throughput, low-latency
processing of event streams, can be leveraged for online process analysis.

Figure 1 provides a conceptual overview of our approach. It operates over
a stream of events that are emitted continuously (bottom). Then, user-defined
patterns that capture behavioral dependencies between activities as well as
abnormal behavior are mapped onto a set of generic process templates (GePrTe).
The instantiated templates are then translated into CEP queries, which are
processed by a CEP engine.

To realize this vision, this paper introduces 17 generic process templates and
their mapping to CEP queries. The templates correspond to common behavioral
dependencies of process activities, e.g., related to process instantiation, basic
control-flow patterns, and behavioral anomalies. To map these templates onto
CEP queries, we introduce a conceptual model that aligns the most important
concepts of either area. Based thereon, we operationalize the mapping and
formulate the CEP queries in the Esper Query Language (EPL), i.e., the query
language of Esper, a generic, open-source CEP engine.

We evaluated our approach using synthetic data and the Sepsis event log. The
results highlight the general feasibility of our approach and illustrate its runtime
efficiency in terms of latency.

The remainder is structured as follows. Section 2 introduces our template-
based approach for online process analysis. The evaluation results are given in
Section 3. Section 4 reviews related work, before Section 5 concludes the paper.

Detect & Conquer: Template-Based Querying of Processes 3

2 The Detect and Conquer Approach

This section presents our “Detect and Conquer” approach to online process
analysis. We first introduce our model for generic process templates, before
turning to their translation into CEP queries.

2.1 The Notion of a Generic Process Template (GePrTe)

A generic process template (GePrTe) captures the essence of common behavioral
dependencies between process activities. It is wrapped in a query that is formu-
lated using the Esper Query Language (EPL), as follows. The SELECT clause
captures the input, while the FROM clause contains the actual template definition.
In addition, a template must be assigned a name.

<independent_templates>

@Name(<template_name>)
SELECT *
FROM PATTERN [

EVERY (<event_definition>)
]
.WIN:TIME(<time_window>)

The <template_name> corresponds to one of the 17 generic process templates
(e.g., SingleEventTrigger), as extracted from the literature and summarized in
Table 1. The <time_window> defines the temporal context, e.g., in terms of the
duration of a sliding window (e.g., ‘60 sec’, ‘2 hours’, or ‘2 days 3 hours’).

A query might require the output of another query as input. Therefore, it
must be possible to define an order of execution. Unless mentioned explicitly, by
a <independent_templates> statement, multiple queries may be defined and
their execution order follows from the order of their definition.

The actual template definition, captured as <event_definition> is given in
terms of the following scheme:

(
<event_id> = <event_class_ref>(<event_attributes>)
<operator> <negation> <predicate>

<operator> <event_definition>
)

Here, the <event_id> is a unique identifier for the respective event. Moreover,
<event_class_ref> is a reference to the class that defines a single event in
the stream, thereby linking the template to a particular schema of the stream.
<event_attributes>, in turn, defines the specific event that should be matched in
the query. <operator> captures the behavioral relation between the events/pred-
icates, with examples being conjunction (‘AND’), disjunction (‘OR’), and se-
quencing (‘->’), while <negation> potentially negates a statement (i.e., using
‘NOT’). In addition, a <predicate> is defined through the following scheme:

4 Imenkamp et al.

(
<event_id>.<event_attributes>

<comparison_operator>
<event_id>.<event_attributes>

) <operator>
<predicate>

Here, the <comparison_operator> is used to compare the attribute values of
two events, e.g., using ‘<’, ‘>’, ‘=’, or ‘ !=’.

Table 1 shows the set of generic process templates that we implemented as
part of our approach. They cover various behavioral dependencies that capture
regular process execution in terms of its basic control-flow and instantiation, as
well as abnormal process execution.

Next, exemplify occurred event, one of the generic process templates. It is
shown in Fig. 2 and, once instantiated, can be used to discover specific events
that trigger the instantiation of a process.

Fig. 2. Example template that triggers when a specific event is observed

The template consists of three parts: (A) the pattern name and core EPL
logic; (B) the template engine syntax, which converts the GePrTe into a CEP
query; and (C) the time window, which allows the user to define the duration for
the sliding window. In (B), the template engine uses a #foreach loop to create
assignments for the events, based on user input. Additionally, the #if condition
appends an ‘or’ operator between event assignments, except for the last one.

Next, we define how to map the generic process templates onto CEP queries.

2.2 Mapping GePrTe onto CEP queries

The mapping relies on the Esper Query Language (EPL). The CEP queries
are written in EPL syntax accordingly. The following query illustrates the EPL
syntax definition for the pattern that an event of type “A” is followed by event of
type “B” within 5 minutes:

Detect & Conquer: Template-Based Querying of Processes 5

Table 1. List of generic process templates

Template Name Description

Basic Control-Flow

Exclusive Choice [1] One of several possible paths is selected
Parallel Split [1] A single path branches into multiple parallel paths
Simple Merge [1] Merges multiple branches into a single branch
Synchronization [1] Synchronize multiple parallel branches into one

Process Instantiation

Occurred Events (conditional) [6] Triggers a process when specific events happen
Single Event Trigger [6] Starts a process upon a single event.
Multi Event Trigger [6] Requires multiple events to start a process, using

all events at once
All Subscriptions [6] Creates event subscriptions for all non-triggered

start events
No Subscriptions [6] No event subscriptions are created for the process

instance
Reachable Subscription [6] Activates event subscriptions only for necessary

process completion
Until Consumption [6] Subscriptions remain active until the relevant event

is consumed
Event-based Unsubscription [6] Cancels remaining subscriptions after one of sev-

eral events occurs

Abnormal Behavior

Deadlock [8] An exclusive choice followed by a parallel merge
Infinite Loop [8] A loop begins with an and join and ends with a

XOR split
Missing Events [12] Triggering an event that requires follow-up actions

but no subsequent event occurs
Unexpected Sequence [12] A sequence of events that should occur
Unattended Decision Points [12] Only positive outcomes are logged, and failures

are unaddressed

6 Imenkamp et al.

SELECT * FROM PATTERN [every a=A -> b=B(a.end + 5 min >= b.start)]

We defined EPL queries that correspond to the discovery of process tasks like
finding behavior dependencies. Table 2 illustrates this. For example, the first row
defines the EPL syntax to find events that follow each other. This corresponds
to the control-flow pattern sequence. The second row defines the EPL syntax
to detect parallel events corresponding to control-flow patterns Parallel Split or
Synchronization.

Table 2. Mapping of Esper EPL Syntax to Process Discovery Tasks

(Esper) EPL Syntax Task

PATTERN [every a=EventA -> b=EventB]
Discovery of
sequence activities [5]

PATTERN [every (a=EventA AND b=EventB)]
Discovery of
parallel activities [5]

PATTERN [every (EventA and not EventB
or EventB and not EventA)]

Discovery of
alternative activities [5]

SELECT COUNT(*) FROM EventA
Discovery of
frequent activities [5]

WHERE EventA.timestamp < EventB.timestamp
Discovery of
temporal dependencies [5]

WHERE EventA.activity = ’Approval’
Filtering of
relevant cases [5]

PATTERN [every a=EventA ->
(b=EventB AND c=EventC)]

Discovery of
complex control-flow patterns [5]

To clarify the correspondence of concepts from the domain of CEP and
process mining, we defined a conceptual model. Each entity in the model is either
attributed to the CEP, PM or has a meaning in both contexts. While the notion
of an event is central to our model, its meaning is defined on a different level of
abstraction in the context of CEP and PM. That is, for CEP an event stands
for the change of a state or the occurrence of a situation of interest within some
system. For PM, an event denotes a recorded activity of a business process. As
such, it comes with an activity and case identifiers, as well as a timestamp. The
former attributes define a certain event class from the perspective of CEP based
on which arbitrary patterns can be constructed, based on CEP operators. Those
patterns again, can be used to encode temporal behavior among certain activities.
Matches of such patterns over some event stream are referred to as complex
events and consequently, correspond to the instantiation of control flows within
process models.

Detect & Conquer: Template-Based Querying of Processes 7

Fig. 3. Conceptual model of CEP query constructs and the inclusion of event log
attributes.

3 Evaluation

This section summarizes the evaluation results. We implemented a prototype in
Java 3. The implementation integrates Esper for event processing and analysis 4.
We applied our approach on publicly accessible event logs and synthetically
generated event logs of different variety in terms of variability, length of traces.
Table 3 summarizes the properties of the event logs that we used for evaluation.
The implementation can be found in a publicly available repository 5.

The evaluation results and queries for the synthetic event logs are summarized
in (Section 3.1). Next, we applied our approach on the Sepsis event log and used
the online heuristics miner to evaluate the discovery result, see (Section 3.2). Due
to page limitations, we only present an excerpt of results. However, all results
(e.g., queries) can be found in the repository along the prototype implementation.
Finally, we evaluated the runtime efficiency (Section 3.3)

3 https://www.java.com/en/
4 https://github.com/espertechinc/esper
5 https://github.com/chimenkamp/detect-and-conquer---Esper

https://www.java.com/en/
https://github.com/espertechinc/esper
https://github.com/chimenkamp/detect-and-conquer---Esper

8 Imenkamp et al.

Table 3. Synthetic and real-world event logs

Log Name Mean Trace
Length

Number of
Activities

Number of
Events

Deadlock, Loop, and
Conditions (Synthetic) 7.12 19 71212

Subscriptions and
Choices (Synthetic) 24.55 29 1227635

Sepsis Cases [15] 14.48 16 15214

3.1 Generation of Different Queries and the Application to an Event
Stream

This section summarizes the results of the generated queries and shows how
we matched them on the event stream. The following query aims to identify a
deadlock (i.e., and AND join is used for synchronization although a XOR has
been used for branching). The query consists of three sub-queries for control-flow
detection (i.e., “ExclusiveChoiceAsStreamactivity_2", “ExclusiveChoiceAsStrea-
mactivity_1" and “ParallelMergeAsStream”) and one query to detect the deadlock
(i.e., see subquery "DeadlockDetection"). "DeadlockDetection" provides the out-
put stream:

Listing 1.1. Generated Query to detect deadlocks
@Name(’ExclusiveChoiceAsStreamactivity_2 ’)
SELECT * FROM PATTERN 2
INSERT INTO ExclusiveChoiceStream
SELECT *
FROM EventRef.win:time (50 sec) as event
WHERE event.activity = ’Electronic␣invoice␣received ’
HAVING NOT EXISTS (

SELECT *
FROM EventRef.win:time (50 sec) as subEvent
WHERE subEvent.caseID = event.caseID

AND subEvent.activity = ’Paper␣invoice␣received ’
);

@Name(’ExclusiveChoiceAsStreamactivity_1 ’)
...

@Name(’ParallelMergeAsStream ’)
INSERT INTO ParallelMergeStream
SELECT *
FROM EventRef.win:time (50 sec) as event
WHERE event.activity IN (

’Order␣Amendment␣Confirmation ’
, ’Clarification␣Sent␣to␣Supplier ’

)
GROUP BY event.caseID

Detect & Conquer: Template-Based Querying of Processes 9

HAVING COUNT(DISTINCT event.activity) = 2;

@Name(’DeadlockDetection ’)
INSERT INTO DeadlockStream
SELECT ex.caseID , ’DeadlockDetected ’ AS DeadlockType
FROM ExclusiveChoiceStream.win:time (50 sec) AS ex
INNER JOIN ParallelMergeStream.win:time (50 sec) AS pm
ON ex.caseID = pm.caseID

OUTPUT LAST EVERY 5 SECONDS;

We applied, i.e., matched, our generated queries against the considered event
streams using Esper. The exemplary event stream, over which the above query
was matched, can be found in our repository.

3.2 Application of the Online Heuristics Miner for Query Generation

Our CEP pattern generation relies on a predefined set of control-flow patterns.
To construct such patterns from a given event stream, we implement the online
heuristic miner, a state-of-the-art approach for online control flow discovery. As
the online heuristic miner has limited performance on high-rate event streams,
we ran it on a 20 second’s long snippet from the Sepsis event log. Given that,
the heuristic’s miner identifies 84 control flow patterns (i.e., sequential: 28, or:
28, and: 28). 1.2 shows one of the simplified queries generated from control-flow
fragments discovered by the heuristic miner with (ε = 0.01). <consistency check>
is a placeholder to turn the inclusive OR into an exclusive OR. The query is
derived by the following control-flow fragment: “OR(ER Triage, IV Liquid)”

Listing 1.2. Exemplary query generated from the sepsis dataset
SELECT * FROM PATTERN [
EVERY(

(a1 = EPPMEventType(’IV␣Liquid ’) -> <consistency check >)
OR
(a2 = EPPMEventType(’IV␣Liquid ’) -> <consistency check >)
OR
(a1 = EPPMEventType(’ER␣Triage ’) -> <consistency check >))

)]. win:time (50 sec)

3.3 Performance Evaluation

This section presents the evaluation results in terms of runtime efficiency. Follow-
ing [10], we evaluated information latency, which refers to the time between where
an event occurred and its processing by the system. The experiments were run on
a MacBook Pro (Apple M2 and 16 GB of RAM). The system processed a stream
of over two million events. Figure 4 illustrates the latency during the experiment.
The plots were smoothed with (1) a rolling mean and (2) a rolling maximum
approach (with window size of 5000 events). Please note that 14 queries have
(on average) lower latencies than two queries, which might be counterintuitive,

10 Imenkamp et al.

but can be explained due optimization efficiency and parallelism across the
queries. However, the 14 query configurations demonstrate more frequently and
higher latency spikes. This can be attributed to occasional resource contention
or synchronization overhead. Additionally, the triggering of complex events may
temporarily increase processing time.

Fig. 4. Latency plots for the average and maximal latency inside a window size of 5000
events

4 Related Work

Several approaches exist that aim to identifying behavioral regularities or ab-
normalities in an offline setting. For instance, [13] introduced an approach to
discovering behavioral models from software execution data.

[7] propose a method to repair outlier behaviors in event logs by removing
infrequent events. Furthermore, [16] addressed the detection of structural behav-
ioral flaws (e.g., deadlocks and lack of synchronization) from business process
event logs. Additionally, approaches have been proposed, which address certain
properties unique to the online setting. For instance, [4] discuss techniques for
discovering processes that change over time. [2] introduced an online framework
for process mining over unordered event streams. In the same vein, [14] in-
troduces a framework for online concept drift detection in processes based on
event streams. Moreover, [3] adapts the heuristic miner that incrementally mines
processes from event streams. However, as also observed in our experiments, the

Detect & Conquer: Template-Based Querying of Processes 11

respective approach does not meet the scalability requirements of online data
processing in the long term.

Despite these advances, there is a notable gap between classical process mining
algorithms adapted for online settings and native online approaches. Classical
algorithms, even when adapted, often struggle with efficiency and flexibility
when confronted with the highly dynamic nature of real-time processing. Native
online approaches, while designed to handle real-time data, sometimes lack the
robustness and explainable pattern recognition capabilities of traditional methods.

5 Conclusion

Online process analysis seeks to identify behavioral regularities or abnormalities
in processes in near-real-time from continuous event streams, a task that remains
challenging. This paper introduced an approach for an online behavioral analysis.
Through the "Detect and Conquer" approach, generic process templates are
defined that capture most behavioral dependencies of process activities and are
subsequently translated into CEP queries. These queries are then applied to
streams of events. The approach has been evaluated using both synthetic and
real-world datasets, and the results demonstrate its feasibility and efficiency.

Acknowledgements. This work received funding by the Deutsche Forschungs-
gemeinschaft (DFG), grant 496119880. The responsibility for the content of this
publication remains with the authors.

References

[1] Wil Aalst, Arthur Ter, Bartosz Kiepuszewski, and Alistair Barros. “Work-
flow Patterns”. In: Distributed and Parallel Databases (Jan. 2003).

[2] Ahmed Awad, Matthias Weidlich, and Sherif Sakr. “Process Mining over Un-
ordered Event Streams”. In: 2020 2nd International Conference on Process
Mining (ICPM). Oct. 2020, pp. 81–88. url: https://ieeexplore.ieee.
org/document/9230157/?arnumber=9230157 (visited on 08/13/2024).

[3] Andrea Burattin, Alessandro Sperduti, and Wil M. P. van der Aalst. “Heuris-
tics Miners for Streaming Event Data”. In: CoRR abs/1212.6383 (2012).
arXiv: 1212.6383. url: http://arxiv.org/abs/1212.6383.

[4] Josep Carmona and Ricard Gavaldà. “Online Techniques for Dealing with
Concept Drift in Process Mining”. In: Advances in Intelligent Data Analysis
XI. Ed. by Jaakko Hollmén, Frank Klawonn, and Allan Tucker. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 90–102.

[5] David Chapela-Campa, Manuel Mucientes, and Manuel Lama. “Mining
frequent patterns in process models”. In: Information Sciences 472 (2019),
pp. 235–257. url: https://www.sciencedirect.com/science/article/
pii/S0020025517304875.

https://ieeexplore.ieee.org/document/9230157/?arnumber=9230157
https://ieeexplore.ieee.org/document/9230157/?arnumber=9230157
https://arxiv.org/abs/1212.6383
http://arxiv.org/abs/1212.6383
https://www.sciencedirect.com/science/article/pii/S0020025517304875
https://www.sciencedirect.com/science/article/pii/S0020025517304875

12 Imenkamp et al.

[6] Gero Decker and Jan Mendling. “Instantiation Semantics for Process Mod-
els”. In: Business Process Management. Ed. by Marlon Dumas, Manfred
Reichert, and Ming-Chien Shan. Vol. 5240. Series Title: Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 164–179. url: http://link.springer.com/10.1007/978-3-540-
85758-7_14 (visited on 05/02/2024).

[7] Mohammadreza Fani Sani, Sebastiaan J. van Zelst, and Wil M. P. van der
Aalst. “Repairing Outlier Behaviour in Event Logs”. In: Business Infor-
mation Systems. Ed. by Witold Abramowicz and Adrian Paschke. Cham:
Springer International Publishing, 2018, pp. 115–131.

[8] Zhaogang Han et al. “Definition and Detection of Control-Flow Anti-
patterns in Process Models”. In: 2013 IEEE 37th Annual Computer Software
and Applications Conference Workshops. 2013, pp. 433–438.

[9] Christian Janiesch and Koschmider et al. “The Internet of Things Meets
Business Process Management: A Manifesto”. In: IEEE Systems, Man, and
Cybernetics Magazine 6.4 (Oct. 2020), pp. 34–44. url: http://dx.doi.
org/10.1109/MSMC.2020.3003135.

[10] Jeyhun Karimov et al. “Benchmarking Distributed Stream Data Processing
Systems”. In: 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE). 2018, pp. 1507–1518.

[11] Agnes Koschmider et al. “Process Mining for Unstructured Data: Chal-
lenges and Research Directions”. In: Modellierung 2024, Potsdam, Germany,
March 12-15, 2024. Ed. by Judith Michael and Mathias Weske. Vol. P-348.
LNI. Gesellschaft für Informatik e.V., 2024, pp. 119–136. url: https:
//doi.org/10.18420/modellierung2024%5C_012.

[12] Ralf Laue, Wilhelm Koop, and Volker Gruhn. “Indicators for Open Issues
in Business Process Models”. In: Requirements Engineering: Foundation for
Software Quality. Ed. by Maya Daneva and Oscar Pastor. Cham: Springer
International Publishing, 2016, pp. 102–116.

[13] Cong Liu. “Automatic Discovery of Behavioral Models From Software Execu-
tion Data”. In: IEEE Transactions on Automation Science and Engineering
15.4 (2018), pp. 1897–1908.

[14] Na Liu, Jiwei Huang, and Lizhen Cui. “A Framework for Online Process
Concept Drift Detection from Event Streams”. In: July 2018, pp. 105–112.

[15] Felix Mannhardt. Sepsis Cases - Event Log. 2016. url: https://data.
4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1.

[16] Wei Song, Zhen Chang, Hans-Arno Jacobsen, and Pengcheng Zhang. “Dis-
covering Structural Errors From Business Process Event Logs”. In: IEEE
Transactions on Knowledge and Data Engineering 34.11 (2022), pp. 5293–
5306.

[17] Gabriel Marques Tavares et al. “Overlapping Analytic Stages in Online
Process Mining”. In: 2019 IEEE International Conference on Services
Computing (SCC). ISSN: 2474-2473. July 2019, pp. 167–175. url: https:
//ieeexplore.ieee.org/document/8813959/footnotes#footnotes
(visited on 08/02/2024).

http://link.springer.com/10.1007/978-3-540-85758-7_14
http://link.springer.com/10.1007/978-3-540-85758-7_14
http://dx.doi.org/10.1109/MSMC.2020.3003135
http://dx.doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.18420/modellierung2024%5C_012
https://doi.org/10.18420/modellierung2024%5C_012
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://ieeexplore.ieee.org/document/8813959/footnotes#footnotes
https://ieeexplore.ieee.org/document/8813959/footnotes#footnotes

	Detect & Conquer: Template-Based Analysis of Processes using Complex Event Processing

